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Résumé

Ces dernières années ont été marquées par une révolution de l’intelligence artificielle, avec des percées
remarquables dans des domaines variés tels que la vision par ordinateur, la génération automatique
d’images et le traitement du langage naturel. Dans les applications scientifiques, l’apprentissage
profond présente un potentiel immense grâce à sa capacité à apprendre à partir des données et à fournir
des solutions approximatives à des problèmes physiques complexes, sans nécessiter une modélisation
explicite. Cependant, l’application de ces approches dans les sciences rencontre encore des défis
techniques importants, tels que le manque de données, le coût des calculs et l’interprétabilité des
modèles.

Cette thèse aborde divers aspects de l’application de l’apprentissage profond aux systèmes physiques,
où ces défis techniques sont particulièrement prononcés. Nous étudions les problèmes de l’identification
de système, du plan d’expérience optimal et de l’estimation d’état, trois sujets interdépendants qui,
ensemble, décrivent le processus de modélisation statistique d’un système physique. Notre objectif
est de démontrer comment l’apprentissage profond peut accélérer les méthodes existantes pour ces
problèmes, tout en respectant les contraintes techniques imposées par les systèmes physiques. Pour ce
faire, nous proposons des méthodes interprétables qui puissent opérer dans un régime de faible nombre
de données et de puissance de calcul limitée, contrairement à l’approche «boîte noire» traditionnelle
des réseaux de neurones.

Notre première contribution traite du problème d’identification de système dans un contexte où les
données sont limitées et non identiquement distribuées. Pour répondre à ces contraintes, nous proposons
un modèle de méta-apprentissage qui incorpore la structure physique du système, permettant ainsi
une modélisation statistique interprétable et à moindre coût.

Ensuite, nous abordons le problème du plan d’expérience pour les systèmes physiques, en nous
concentrant sur les applications aux systèmes dynamiques embarqués tels que les robots. Ces systèmes
doivent fonctionner en temps réel et imposent donc des contraintes strictes en termes de quantités de
données disponibles et de capacités de calcul. En utilisant la théorie de l’information, nous concevons
un algorithme d’exploration compatible avec ces contraintes, que nous appliquons d’abord à des modèles
linéaires de la dynamique, puis à des modèles plus complexes tels que les réseaux de neurones.

Enfin, notre dernière contribution s’attaque au problème de l’assimilation de données, qui est partic-
ulièrement crucial en météorologie. Nous proposons un algorithme neuronal pour résoudre ce problème
inverse, et explorons comment cette approche peut améliorer la précision des méthodes traditionnelles
tout en réduisant leur coût de calcul.

Mots-clés: apprentissage profond, systèmes physiques, identification de système, apprentissage actif,
plan d’expériences, assimilation de données
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Abstract

In recent years, we have witnessed an artificial intelligence revolution, with remarkable breakthroughs
in various fields such as computer vision, automatic image generation, and natural language processing.
In scientific applications, deep learning has immense potential due to its ability to learn from data and
provide approximate solutions to complex physical problems without the need for explicit modeling.
However, the application of these approaches in the sciences still faces significant technical challenges,
such as data scarcity, computational complexity, and model interpretability.

This thesis addresses various aspects of deep learning applications to physical systems, where these
technical challenges are particularly prominent. We explore the problems of system identification,
optimal experimental design, and state estimation, three interrelated issues that together describe the
statistical modeling process of a physical system. Our goal is to demonstrate how deep learning can
accelerate existing methods for these problems while respecting the applicability constraints imposed
by physical systems. To achieve this, we propose interpretable methods that can operate in a regime of
limited data and computational power, unlike the traditional "black-box" approach of deep learning.

Our first contribution addresses the problem of system identification in a context where observations
are limited in number and not identically distributed. To meet these constraints, we propose a
meta-learning model that incorporates the physical structure of the system, enabling interpretable
learning at a lower cost.

Next, we tackle the problem of experimental design for physical systems, focusing on applications to
embedded dynamical systems such as robots. These systems must operate in real-time, imposing strict
constraints on the amount of available data and computational capacity. Using information theory,
we design an exploration algorithm compatible with these constraints, which we first apply to linear
dynamics and then to more complex models such as neural networks.

Finally, our last contribution addresses the problem of data assimilation, which is particularly crucial
in meteorology. We propose a neural network-based approach to solve this inverse problem and explore
how it can improve the accuracy of traditional methods while reducing their computational cost.

Keywords: deep learning, physical systems, system identification, active learning, experimental design,
data assimilation
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Thesis outline

Chapter-by-chapter summary

The following is a chapter-by-chapter summary of this thesis.

Chapter 1 The opening chapter of this thesis provides an overview of statistical learning and deep
learning for physical systems. Beginning with a historical perspective on statistical estimation in
physical experiments, we discuss the role of machine learning in the sciences in the era of artificial
intelligence. While artificial intelligence has the potential to accelerate science with a wealth of
applications, the complexity of physical systems also poses its own challenges. With these challenges
in mind, we outline the contributions of this thesis in the field of deep learning for physical systems.

Chapter 2 In this chapter, we lay the mathematical framework on which we build in this thesis.
We introduce the state-space representation of physical systems, and the associated statistical model.
Based on this formalism, and drawing on a number of examples, we present various statistical problems
around physical systems and machine learning, which are addressed in the remainder of this thesis.
Although these are separate problems, we show how they are interconnected and together form a
unified statistical modeling process for physical experiments.

Chapter 3 This chapter deals with the multi-environment learning problem, where a physical system
is learned with data collected from inhomogeneous experimental conditions. The aim is to design
a learning architecture for system identification that can adapt and generalize to the variability of
physical systems. Recently, meta-learning approaches have made significant progress in multi-task
learning, but they rely on black-box neural networks, resulting in high computational costs and
limited interpretability. Leveraging the physical structure of the learning problem, we argue that
multi-environment generalization can be achieved using a simpler learning model, with an affine
structure with respect to the learning task. Crucially, we prove that this architecture can identify the
physical parameters of the system, enabling interpretable learning. We demonstrate the competitive
generalization performance and the low computational cost of our method by comparing it to state-of-
the-art algorithms on physical systems, ranging from toy models to complex non-analytical systems.
The interpretability of our method is illustrated with original applications to parameter estimation
and to adaptive control.

Chapter 4 This chapter tackles the problem of active learning and experimental design for system
identification, where the experimenter seeks to choose the most informative experiments for learning the
system. We focus on dynamical systems, which adds an online decision-making constraint. For multi-
input multi-output linear time-invariant dynamical systems, we use an information-theoretic framework
and introduce an online greedy exploration policy where the control maximizes the information of the
next step. In a setting with a limited number of observations, our algorithm has low complexity and
shows experimentally competitive performances compared to more elaborate gradient-based methods.
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Related publications and preprints

Chapter 5 This chapter aims to extend the online exploration policy of the previous chapter to
nonlinear learning models, including neural networks. The complexity of nonlinear dynamics and the
computational limites of real systems make it challenging to formulate and optimize an exploration
objective. In this chapter, we introduce FLEX, an exploration algorithm for nonlinear dynamics based
on optimal experimental design. Our policy maximizes the information of the next step and results in
an adaptive exploration algorithm, compatible with generic parametric learning models and requiring
minimal resources. We test our method on a number of nonlinear environments covering different
settings, including time-varying dynamics. Keeping in mind that exploration is intended to serve an
exploitation objective, we also test our algorithm on downstream model-based classical control tasks
and compare it to other state-of-the-art model-based and model-free approaches. The performance
achieved by FLEX is competitive, and its computational cost is low.

Chapter 6 This chapter studies the data assimilation problem and introduces preliminary work on a
neural network approach. Data assimilation is a central problem in many geophysical applications,
such as weather forecasting. It aims to estimate the state of a potentially large system, such as the
atmosphere, from sparse observations, supplemented by prior physical knowledge. The size of the
systems involved and the complexity of the underlying physical equations make it a challenging task
from a computational point of view. Neural networks represent a promising method of emulating
the physics at low cost, and therefore have the potential to considerably improve and accelerate
data assimilation. We introduce a deep learning approach where the physical system is modeled as
a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network. This
allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the
reconstruction error on a dataset with different observation processes. We illustrate our approach on
chaotic dynamical physical systems with sparse observations and compare it to traditional variational
data assimilation methods.

Chapter 7 The final chapter of this thesis summarizes our contributions and discusses several limites
and possible extensions.

Related publications and preprints

Publications and preprints related to this thesis are listed below.

Chapter 3 is based on the article Interpretable Meta-Learning of Physical Systems (Blanke and Lelarge,
2024), published in The Twelfth International Conference on Learning Representations (ICLR 2024).

Chapter 4 is based on the article Online greedy identification of linear dynamical systems (Blanke and
Lelarge, 2022), published in the Proceedings of the IEEE 61st Conference on Decision and Control (CDC
2022).

Chapter 5 is based on the article FLEX: an Adaptive Exploration Algorithm for Nonlinear Sys-
tems (Blanke and Lelarge, 2023), published in the Proceedings of the 40th International Conference on
Machine Learning (ICML 2023).

Chapter 6 is based on the article Incremental Neural Data Assimilation (Blanke et al., 2024), accepted
at the ICML 2024 AI for Science workshop (ICML 2024 AI4Science).
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Software

Software

In the course of this thesis, we have paid particular attention to the development of open-source
numerical tools and reproducible experiments. Our software contributions are summarized below.

CAMEL A deep meta-learning architecture for multi-environment learning of physical systems (Chap-
ter 3), based on PyTorch (Paszke et al., 2019). https://github.com/MB-29/CAMEL

Greedy identification Online active identification algorithm for linear dynamical systems (Chapter 4),
based on PyTorch. https://github.com/MB-29/greedy-identification

FLEX A fast, adaptive and flexible model-based reinforcement learning exploration algorithm (Chap-
ter 5), based on PyTorch. https://github.com/MB-29/FLEX

Neural data assimilation A neural method for the data assimilation problem (Chapter 6), based
on JAX (Bradbury et al., 2018). https://github.com/MB-29/assimilation
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Résumé substantiel

Chapitre 1

Ce chapitre explore le rôle croissant de l’intelligence artificielle (IA) dans les sciences physiques,
en mettant particulièrement l’accent sur l’apprentissage profond. L’IA, notamment avec les réseaux
neuronaux profonds, a transformé de nombreux domaines tels que la vision par ordinateur, la génération
d’images et le traitement du langage naturel. Ces modèles, inspirés par la structure du cerveau humain,
permettent de traiter des données complexes et de trouver des solutions approximatives à des problèmes
auparavant inaccessibles avec des méthodes traditionnelles.

Dans les sciences, des applications marquantes de l’IA ont émergé, telles que la prédiction la structure des
protéines, ou des odèles avancés de prévision météorologique. Cependant, l’intégration de l’apprentissage
profond aux systèmes physiques pose plusieurs défis. Ces systèmes sont complexes, non linéaires et
souvent limités par la rareté des données expérimentales. Les réseaux neuronaux, bien qu’efficaces,
restent des « boîtes noires » difficiles à interpréter, ce qui complique leur adoption dans des contextes
critiques où les erreurs peuvent avoir des conséquences majeures.

Le chapitre aborde également l’évolution de la modélisation statistique, des méthodes historiques
comme les moindres carrés aux techniques modernes d’apprentissage profond. Ces dernières, grâce à
leur flexibilité, complètent ou remplacent parfois les modèles physiques traditionnels, en apprenant
directement à partir des données. Elles permettent ainsi de modéliser des phénomènes complexes comme
la dynamique des fluides ou les interactions robotiques, tout en réduisant les coûts computationnels.

Enfin, ce chapitre met en lumière les défis liés à la quantification des incertitudes et à l’exigence de
modèles robustes face aux variations des environnements expérimentaux, tout en posant les bases des
contributions de la thèse.

Chapitre 2

Ce chapitre établit le cadre statistique fondamental sur lequel repose cette thèse. En utilisant la
représentation d’espace d’état, un formalisme issu de la théorie du contrôle, il propose une approche
unifiée pour modéliser les systèmes physiques. Ce cadre permet de modéliser les relations complexes
entre les variables physiques observées et les variables non observées, tout en tenant compte des
incertitudes inhérentes aux systèmes et aux mesures.

Représentation d’espace d’état Un système physique est décrit par un vecteur d’état regroupant
toutes les variables physiques qui le caractérisent. Ces variables évoluent en fonction des contrôles
expérimentaux appliqués par l’utilisateur et des lois physiques sous-jacentes, souvent modélisées par
des équations paramétriques. Cependant, ces modèles sont rarement parfaits : des effets non modélisés
et des bruits expérimentaux ajoutent des incertitudes. Par ailleurs, les observations sont généralement
partielles et bruitées, nécessitant une modélisation probabiliste pour rendre compte de cette complexité.
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Nous proposons des exemples illustrant cette représentation, comme celui du champ électrostatique
généré par des charges ponctuelles. Ce système simple permet d’introduire les concepts fondamentaux
de l’estimation statistique. D’autres exemples, comme les systèmes dynamiques non linéaires (par
exemple, le pendule) ou des modèles atmosphériques complexes, montrent comment cette approche
s’étend à des systèmes réels et plus difficiles à modéliser.

Problèmes statistiques clés Le chapitre met en avant trois problèmes statistiques fondamentaux liés à
la modélisation des systèmes physiques. Tout d’abord, le problèem d’identification de système consiste
à estimer les paramètres d’un modèle à partir de données expérimentales. L’objectif est de construire
un modèle paramétrique qui représente fidèlement le système physique. Cela inclut des défis tels que
la gestion de données hétérogènes provenant de conditions expérimentales variées et l’intégration de
modèles physiques et de modèles appris par des réseaux neuronaux. Ensuite le problème de plan
d’expérience optimal consiste à déterminer une stratégie pour choisir les expériences qui maximisent
l’information recueillie sur le système. Ce problème est crucial lorsque les ressources expérimentales
sont limitées ou coûteuses. Le chapitre introduit des approches théoriques basées sur des critères
d’optimalité, tels que l’information de Fisher, pour guider ces choix. Enfin, nous présentons le problème
d’assimilation de données, qui vise à reconstruire les états d’un système physique à partir d’observations
incomplètes et bruitées. Ce cadre est essentiel dans des domaines tels que la météorologie, où les
observations sont clairsemées et les systèmes très complexes. Des méthodes probabilistes, comme
le filtre de Kalman ou ses extensions non linéaires, sont utilisées pour intégrer les observations aux
connaissances a priori.

Défis Ce chapitre identifie les principaux défis qui feront l’objet des contributions de cette thèse :
la gestion de données limitées, l’interprétabilité des modèles d’apprentissage, et la quantification
des incertitudes. Les modèles traditionnels, souvent linéaires, sont robustes mais limités dans leur
capacité à représenter des phénomènes non linéaires complexes. Les réseaux neuronaux profonds, bien
qu’expressifs, posent des problèmes d’interprétabilité et nécessitent de grandes quantités de données
pour éviter le surapprentissage. Ce chapitre présente l’enjeu de ces défis dans les problèmes statistiques
qui nous occupent, en se fondant sur le cadre mathématique de la représentation d’espace d’états.

Chapitre 3

Ce chapitre explore le problème de l’apprentissage de systèmes physiques dans des environnements
multiples, un défi courant dans les sciences physiques où les données proviennent de conditions expéri-
mentales variées. Ces variations rendent nécessaire le développement d’algorithmes d’apprentissage
capables de généraliser efficacement et de s’adapter rapidement à de nouveaux environnements. Ce
chapitre introduit une méthode appelée CAMEL (Context-Affine Multi-Environment Learning), conçue
pour relever ces défis tout en garantissant l’interprétabilité du modèle d’apprentissage.

Problème Les systèmes physiques sont souvent influencés par des paramètres qui varient selon
les environnements expérimentaux. Ces variations, parfois subtiles, compliquent l’identification des
systèmes et nécessitent des modèles d’apprentissage capables de gérer des données non homogènes. Les
approches existantes basées sur l’apprentissage profond, comme les algorithmes de méta-apprentissage,
sont performantes mais souvent coûteuses en calcul et manquent d’interprétabilité. Ces limites rendent
leur application difficile dans des contextes où les données sont rares et les contraintes computationnelles
importantes, comme en robotique ou dans la modélisation des systèmes dynamiques.

Contributions Le chapitre propose une approche simplifiée et efficace basée sur une architecture
d’apprentissage affine en un paramètre de contexte. L’architecture CAMEL exploite la structure
physique sous-jacente des systèmes pour améliorer la généralisation tout en réduisant les coûts
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computationnels. Elle repose sur l’idée que de nombreux systèmes physiques peuvent être modélisés par
des relations affines en fonction des paramètres spécifiques aux tâches. Cela permet d’aligner le modèle
statistique avec les structures physiques connues, facilitant ainsi l’identification des paramètres. En
outre, CAMEL se distingue par sa simplicité computationnelle : il évite les optimisations complexes des
approches traditionnelles et s’adapte efficacement aux nouvelles tâches à l’aide de solutions analytiques
directes.

Validation expérimentale La méthode est évaluée sur plusieurs systèmes physiques, allant de modèles
analytiques simples à des systèmes non analytiques complexes. Les expériences montrent que CAMEL
offre des performances comparables, voire supérieures, aux méthodes existantes, avec une capacité re-
marquable à identifier les paramètres physiques. Par exemple, dans des applications robotiques, CAMEL
permet un contrôle adaptatif tout en identifiant simultanément les paramètres dynamiques des robots,
même dans des conditions expérimentales difficiles.

Perspectives L’architecture que nous présentons ouvre des perspectives prometteuses pour l’apprentissage
dans les sciences physiques, en particulier dans les domaines nécessitant des solutions interprétables
et économes en calcul. Des extensions potentielles pourraient être étudiées, comme l’intégration de
contraintes physiques plus complexes ou l’utilisation d’approches d’apprentissage actif pour maximiser
l’efficacité des données disponibles.

Chapitre 4

Ce chapitre traite de l’identification active des systèmes dynamiques linéaires, un problème crucial
dans des domaines comme l’aéronautique et la robotique. L’objectif est de concevoir une méthode
d’exploration efficace pour estimer les paramètres d’un système inconnu tout en minimisant le nombre
d’observations nécessaires. Ce travail se concentre sur les systèmes linéaires multivariés invariants dans
le temps, qui, malgré leur simplicité, peuvent représenter de nombreux systèmes réels, y compris des
systèmes non linéaires localement linéarisés.

Problème L’identification des systèmes physiques consiste à estimer leurs paramètres en recueil-
lant des données expérimentales. Cependant, ces expériences sont souvent coûteuses en termes de
temps, de ressources et de risques. Ce chapitre s’intéresse à une approche d’identification active,
où l’expérimentateur choisit des actions pour maximiser les informations collectées à chaque étape,
permettant ainsi d’améliorer la précision de l’estimation tout en réduisant les coûts.

Contributions Le chapitre présente une nouvelle politique d’identification active basée sur la théorie
de l’informaiton, en adoptant une approche gloutonne. Contrairement aux méthodes existantes qui op-
timisent sur des horizons longs, cette approche simplifie le problème en se concentrant sur l’optimisation
des informations recueillies à la prochaine étape. Cette stratégie offre plusieurs avantages. Première-
ment, elle fonctionne en temps réel, avec des contraintes computationnelles minimales. Deuxièmement,
elle est robuste dans des contextes où les ressources d’observation et de calcul sont limitées. Enfin, elle
surpasse, dans certains cas, des méthodes plus complexes basées sur des méthodes d’optimisation de
descente de gradient, en termes de précision et de coût.

Validation expérimentale Les performances de l’algorithme glouton sont évaluées sur des systèmes
linéaires simulés ainsi que sur des applications réalistes, comme l’identification des paramètres d’un
système aéronautique. Les résultats montrent que cette méthode peut rivaliser avec des algorithmes
sophistiqués tout en étant beaucoup plus économe en ressources. Par exemple, dans des expériences
simulant des mouvements latéraux d’un avion, l’approche gloutonne obtient des performances similaires
à celles d’un oracle tout en réduisant considérablement le temps de calcul.
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Perspectives Bien que cette approche repose sur des hypothèses simplifiées (comme l’accès complet
aux états du système), elle offre une base solide pour une application à des systèmes plus complexes.
Dans des contextes réels, des contraintes supplémentaires, comme des échantillons limités ou des
restrictions sur les entrées, pourraient être prises en compte. Enfin, le chapitre ouvre des perspectives
sur la généralisation de cette méthode à des systèmes non linéaires, une problématique abordée dans le
chapitre suivant.

Chapitre 5

Ce chapitre traite de l’exploration active de systèmes dynamiques non linéaires, un défi central pour
de nombreuses applications en robotique, aéronautique et systèmes énergétiques. Contrairement
aux systèmes linéaires, les systèmes non linéaires présentent des dynamiques complexes qui rendent
leur apprentissage coûteux en termes de données et de calcul. Le chapitre propose un algorithme
appelé FLEX, conçu pour explorer efficacement ces systèmes tout en respectant les contraintes pratiques
des systèmes réels, comme la mémoire et la vitesse de calcul.

Problème L’exploration active vise à collecter des données informatives pour modéliser un système
inconnu avec un minimum d’échantillons. Cela est essentiel dans des contextes où les expériences
sont coûteuses, par exemple lors des tests de systèmes embarqués ou des simulations aéronautiques.
Les approches actuelles, bien que puissantes, souffrent souvent de limites : elles nécessitent de longs
horizons de planification, sont lentes ou ne s’adaptent pas aux changements dynamiques en temps réel.

Contributions La politique d’exploration présentée se distingue par son adaptabilité et sa simplicité
computationnelle. FLEX utilise des principes issus de la théorie de l’information pour maximiser
l’efficacité des données recueillies. Plutôt que de planifier sur de longs horizons, FLEX adopte une
approche gloutonne, optimisant les décisions à chaque étape pour s’adapter rapidement aux nouvelles
observations. Il est compatible avec des modèles paramétriques variés, y compris les réseaux de
neurones, et peut être utilisé dans des environnements où les dynamiques changent au fil du temps.

Validation expérimentale Les performances de FLEX sont évaluées dans plusieurs environnements
non linéaires, comme le pendule amorti ou des systèmes à dynamique variable dans le temps. Les
résultats montrent que FLEX surpasse les approches traditionnelles, tant en termes d’efficacité des
échantillons que de coût computationnel. Par exemple, dans des environnements à dynamique varibale,
l’algorithme dirige les actions vers des zones d’intérêt où les données sont les plus informatives, tout en
maintenant une faible charge de calcul.

Perspectives Ce chapitre ouvre des perspectives prometteuses pour l’exploration de systèmes com-
plexes. FLEX pourrait être étendu à des contextes plus réalistes, comme les systèmes où les états
ne sont que partiellement observables. De plus, l’intégration de nouvelles avancées en différentiation
automatique pourrait encore réduire les coûts de calcul. Enfin, l’algorithme pourrait également être
adapté pour équilibrer exploration et exploitation dans des tâches où l’objectif est de maximiser les
performances de contrôle basées sur les modèles appris.

Chapitre 6

Ce chapitre explore l’utilisation des réseaux neuronaux pour résoudre le problème d’assimilation de don-
nées, un défi clé dans les applications géophysiques comme la prévision météorologique. L’assimilation
de données consiste à reconstruire l’état d’un système physique complexe à partir d’observations
partielles et bruitées, en intégrant des connaissances a priori sur la physique sous-jacente. Bien que
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les méthodes traditionnelles, comme l’algorithme 4D-Var, soient efficaces, elles souffrent d’un coût
computationnel élevé. Ce chapitre propose une approche neuronale pour réduire ces coûts tout en
maintenant une précision élevée.

Problème L’assimilation de données est essentielle pour des systèmes comme l’atmosphère terrestre
et l’océan, où les observations sont rares et souvent imprécises. Les algorithmes traditionnels, bien
qu’exacts, nécessitent des calculs intensifs, en particulier pour simuler et différencier des modèles
physiques complexes. En réponse à ces limites, les réseaux neuronaux offrent une méthode prometteuse
pour représenter les dynamiques physiques à un coût réduit.

Contributions Ce chapitre introduit une méthode neuronale qui repose sur un opérateur d’assimilation
paramétré par un réseau neuronal. L’approche adopte un apprentissage de bout en bout pour minimiser
l’erreur de reconstruction des états physiques à partir des observations. Contrairement aux approches
classiques, le modèle utilise des distributions gaussiennes locales comme a priori, garantissant ainsi un
calcul de solution efficace. De plus, cette méthode peut être itérative, améliorant progressivement la
qualité de la reconstruction en affinant les estimations.

Validation expérimentale Les performances de cette méthode sont évaluées sur des systèmes physiques
simulés, notamment le pendule non linéaire et le système de Lorenz. Ces expériences montrent que
l’approche neuronale offre des gains significatifs en termes de coût computationnel tout en maintenant
une précision comparable à celle des méthodes traditionnelles. De plus, l’intégration de l’estimation
neuronale dans des algorithmes comme le 4D-Var réduit le nombre d’itérations nécessaires, combinant
ainsi le meilleur des deux mondes : l’efficacité neuronale et la robustesse des équations de la physique.

Perspectives Bien que prometteuse, cette méthode présente des limites dans les systèmes de grande
dimension, où les réseaux neuronaux peuvent manquer de généralisation en dehors des données
d’entraînement. Pour des systèmes plus complexes, une approche hybride combinant réseaux neuronaux
et modèles physiques semble être une solution idéale. Enfin, l’importance de la quantification des
incertitudes est soulignée, ouvrant la voie à des recherches futures pour améliorer la fiabilité des
prédictions.

Chapitre 7

Le dernier chapitre de cette thèse récapitule nos contributions et discute de leurs limites, ainsi que
des pistes d’extension possibles. Nous résumons le cœur de notre approche, en expliquant comment
les réseaux neuronaux peuvent compléter les approches statistiques classiques tout en conservant
une certaine simplicité, et en offrant une meilleure interprétabilité, essentielle pour des applications
scientifiques critiques.

Bien que les approches proposées aient montré des performances prometteuses sur des simulations,
nous insistons sur la nécessité d’évaluations sur des systèmes réels de plus grande échelle, comme des
robots ou des modèles géophysiques complexes, pour valider leur robustesse.

Parmi les pistes de recherche, plusieurs défis demeurent. Rendre les modèles plus transparents est
crucial pour renforcer leur adoption dans des domaines tels que la modélisation climatique. Par ailleurs,
l’intégration des connaissances physiques dans les modèles pourrait réduire la dépendance à de grands
ensembles de données, notamment pour des tâches nécessitant peu d’échantillons. L’utilisation de
techniques comme la compression des signaux physiques pourrait permettre de réduire les ressources
nécessaires pour traiter des systèmes complexes. Enfin, les modèles génératifs, comme les modèles de
diffusion, pourraient fournir une méthode robuste pour mesurer les incertitudes dans les prédictions
scientifiques.
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En conclusion, cette thèse ouvre de nouvelles perspectives pour l’application de l’apprentissage profond
aux sciences physiques, tout en soulignant la nécessité de solutions robustes, efficaces et interprétables
pour les systèmes complexes.

18



Résumé substantiel

19



Résumé substantiel

20



List of Symbols

d state dimension
n parameter dimension
m observation dimension
k input dimension
x ∈ Rd state
u ∈ Rk input
y ∈ Rm observation
θ ∈ Rn parameter vector
M : (u, θ) ∈ Rk × Rn 7→M(u; θ) ∈ Rd state model
h : x, u ∈ Rd × Rk 7→ h(x, u) ∈ Rm observation function
η ∈ Rd model noise
ξ ∈ Rm observational noise
z regression variable
f(z; θ) observation model
A×B matrix multiplication of matrices A and B
A> matrix transposition
Tr(A) trace of matrix A
∇ gradient
p probability density
E expectation
N (µ, P ) normal distribution with mean µ and covariance P
` : Rn → R+ loss function
Π policy
γ learning rate

21



List of Symbols

22



Chapter 1

Introduction

Recent years have seen an artificial intelligence revolution with outstanding breakthroughs across various
domains, such as computer vision, automatic image generation, and natural language processing. In
scientific applications, despite its great potential, deep learning still faces significant technical challenges.
This chapter discusses the applications and challenges of deep learning for physical systems and outlines
the contributions of this thesis.

Chapter organization This chapter is organized as follows. Section 1.1 discusses the role of scientific
applications in the context of the artificial intelligence revolution. Section 1.2 explains the importance
of statistical modeling in the sciences, from historical methods to deep learning approaches. Section 1.3
highlights several challenges in applying deep learning to physical systems. Section 1.4 outlines our
contributions to addressing these challenges.
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1.1. The sciences in the age of artificial intelligence

1.1. The sciences in the age of artificial intelligence

Artificial Intelligence (AI) is booming and full of promise, revolutionizing many technological sectors
with significant societal impact. In certain fields, AI is widely recognized as state of the art, particularly
in areas like computer vision (Szeliski, 2022), automatic image generation (Ho et al., 2020), and natural
language processing (Vaswani et al., 2017), where AI has made substantial strides toward mainstream
use.

While AI is a broad and encompassing term, many of the recent breakthroughs are driven by a
specific subset of AI known as deep learning. Deep learning involves training very large statistical
models known as deep neural networks on extensive datasets. Deep learning leverages multiple layers
of interconnected neurons, inspired by the human brain’s architecture, to learn complex patterns
and representations from data (LeCun et al., 2015). Once trained, these neural networks can make
predictions or generate outputs at a relatively low computational cost. The underlying general idea is
that a neural network properly trained on a sufficiently large dataset offers the possibility of finding
approximate solutions to problems too complex for traditional computational methods. The successes
of AI highlight the versatility and power of deep learning, setting the stage for its potential impact in
more complex and traditionally challenging areas such as physical systems.

The potential for deep learning in the sciences is considerable. There has been growing interest and
substantial research investment in applying AI to disciplines such as biology, robotics, and climate
science. Notable examples include AlphaFold (Jumper et al., 2021), an AI that predicts protein structure,
and the various weather forecast models developed by major AI companies, such as GraphCast (Lam
et al., 2022) or FourCastNet (Kurth et al., 2023). In these fields, modeling the underlying physical
phenomena is particularly challenging due to their inherent complexity. Consequently, neural networks
are appealing for their ability to provide approximate solutions where traditional physics-based models
struggle.

A vast field of research is therefore emerging at the interface between different fields of science and
artificial intelligence, statistics, and mathematics. However, the complexity of physical systems often
poses significant barriers to the immediate application of neural networks. It is thus of great interest to
overcome these challenges and combine domain expertise with deep learning to achieve better results
than each of the disciplines separately (Karniadakis et al., 2021).

1.2. Learning physical systems: from least squares to deep learning

Figure 1.1. First page
of Legendre’s memoir on
the estimation of comet
orbits.

Statistical methods have always been part of physical experimentation,
long before the rise of machine learning. The celebrated method of least
squares, for example, finds its roots in astronomy, as scientists sought
to aid navigators during the Age of Discovery. Accurate descriptions of
celestial bodies were essential for safe navigation across uncharted seas.
The method, pioneered by Legendre (1806) and Gauss (1809), was among
the first mathematically rigorous methods for statistical estimation, with
connections to the normal distribution.

Consequently, the first mathematically rigorous applications of statistical
learning emerged from physics, where these methods are used to estimate
physical parameters. Physical models generally rely on such parameters,
which may not always be known beforehand. During experimentation,
these parameters are inferred from measurements, which are inevitably
subject to errors, due to model imprecision or to the observation process.
A robust and efficient statistical treatment of these errors is essential to
validate experimental results (Pugh and Winslow, 1966).
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Figure 1.2. Left Upkie, credit: Stéphane Caron. Right Pyrene humanoid, credit: CNRS.

Least-squares parameter estimation remains the preferred method for many applications due to its
simplicity of solution and computational efficiency. In robotics, for example, least-squares estimation is
used to estimate the system’s dynamic parameters: as a robot moves, its inertia and mass may change
over time (consider a robot picking up, carrying and dropping a load). Accurate estimation of these
parameters is essential for real-time control of the robot (Tedrake, 2022).

Today, statistical learning methods have undergone remarkable advancement, serving as the backbone
of the AI revolution. The development of learning architectures based on neural networks, coupled
with the availability of large datasets and powerful computing resources, as well as the emergence of
new optimization algorithms, has extended the scope of least-squares regression to highly sophisticated
deep learning models (Kingma and Ba, 2017). For physical systems, such powerful statistical models
are appealing for several types of applications, which we briefly describe next.

Beyond least-squares estimation of physical parameters, more advanced statistical models such as neural
networks can be introduced to complement a theoretical model. While theoretical models are often
based on explicit physical principles and equations, they may fail to capture the full complexity of real-
world phenomena. In contrast, deep learning models can autonomously learn patterns and relationships
directly from data, without the need for explicit equations or assumptions about underlying processes.
This flexibility allows deep learning models to adapt to complex and nonlinear relationships that may
be challenging for traditional theoretical models to capture accurately (Brunton and Kutz, 2022).

Consider the example of robotics. A fundamental aspect of robot control algorithms involves planning
future movements based on desired motions, requiring a faithful model of robot dynamics. Figure 1.2
shows two biped robots, for which the mere task of balancing requires an accurate model. While
physics provides a solid foundation for describing robot motion equations (Spong et al., 2020), inherent
complexities such as friction introduce significant errors, which may considerably impair control
performance. It is therefore crucial to account for these effects as accurately as possible. When
these phenomena are too complex for direct physics-based modeling, statistical methods offer a viable
alternative by fitting a model to data. Deep learning emerges as a promising option for learning these
nonlinear effects, allowing the use of hybrid models where neural networks learn only the unknown
component of the dynamics (Zeng et al., 2020; Gao et al., 2024).

Moreover, deep learning models have demonstrated the capability to not only complement but even
replace traditional physical models in certain scenarios. Indeed, the computational efficiency of neural
networks enables them to outperform complex physical simulators in terms of speed, as they are cheaper
to evaluate once trained. This advantage has led to the development of surrogate models (Willard
et al., 2020; Haghighat et al., 2021), which use neural networks to approximate the behavior of complex
systems at a fraction of the computational cost. For example, fluid dynamics (Lemarié-Rieusset, 2018),
which represent particularly complex physical systems (Carlson et al., 2006), have been effectively
modeled using neural networks (Thuerey et al., 2020). In atmospheric physics and in oceanography,
deep learning has been applied for weather and climate forecasting (Lam et al., 2022; Hoyer et al., 2023;

25



1.3. Challenges of learning physical systems

Figure 1.3. Ocean modeling in the Gulf Stream region, using deep neural networks for data assimila-
tion (Beauchamp et al., 2023).

Ben Bouallègue et al., 2024), as well as ocean modeling (Fablet et al., 2021a), offering a promising
approach for improving the accuracy and efficiency of traditional methods that rely on the numerical
integration of the Navier-Stokes equations. Figure 1.3 shows the reconstruction of the sea surface
height in the Gulf Stream region by a neural network, illustrating the potential to learn complex
physical processes from data. The computational gain of deep learning can be crucial in many
scenarios. For instance, fast predictions are valuable in real-time applications, such as extreme event
prediction (Ghil et al., 2011), or clinical diagnosis, which uses magnetic resonance imaging-based
computational fluid dynamics (Peper et al., 2022). The computational savings of deep learning also
allow for many-query applications, where the model needs to be evaluated a large number of times.
Such applications include optimal experimental design (Rainforth et al., 2024), data assimilation (Fablet
et al., 2021b), and uncertainty quantification (Abdar et al., 2021). It should be noted, however, that
there is a considerable upstream cost in the training of the neural network on immense quantities of
high-dimensional data (Strubell et al., 2020).

1.3. Challenges of learning physical systems

While the examples above demonstrate the great potential of deep learning in the sciences, this field
also presents significant technical challenges. The range of applications for artificial intelligence is vast,
and each domain comes with its own technical constraints. We highlight several challenges common to
many physical systems through various examples.

The use of deep learning methods relies on the availability of sufficiently large datasets to train
complex models. However, acquiring data for physical systems often comes at a high cost due to
the resource-intensive nature of experiments. Consider geophysical systems like the ocean, where
obtaining observations requires in situ measurements or costly expeditions aboard oceanographic
vessels, each costing millions of dollars (Li et al., 2023). In fields like material discovery, which aims
to identify and develop new materials with desired properties, data generation requires specialized
equipment and skilled labor for experimental synthesis (Nandy et al., 2022). Even on a smaller scale,
conducting robotic experiments entails considerable investments of time, energy, and potential risk of
accidents. Moreover, when data is obtained from physical simulators, computational expenses and
slow processing times can pose significant barriers, particularly for complex systems like numerical
weather prediction (Palmer, 2012) or molecular dynamics simulations (Durrant and McCammon, 2011).
Consequently, learning methods must operate in a low-data regime and compensate for the scarcity of
observations by incorporating physical knowledge into the model (Karniadakis et al., 2021).

Another significant limitation is the computational cost of modeling physical systems. Physical
systems may be complex and large, resulting in high-dimensional estimation problems. For instance,
in numerical weather prediction problems, the spatial grid used for forecasting may store a number
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of variables on the order of one million (Bocquet et al., 2014). This places severe limitations on the
computational budget required by any new learning method. In other applications, it is not merely the
size, but rather the computation time that poses a challenge. In robotics, for example, the calculations
executed by robots or other embedded systems must run in real time, at a typical operating frequency
of 100 Hz, with limited computational power (Wang, 2009). As a consequence, running large-scale
models becomes impractical, making it crucial to develop smaller, more computationally efficient
architectures.

Traditional methods of parameter estimation, as proposed by Gauss or Legendre in the method
of least squares, rely on a physical model and aim to minimize the error on the model’s physical
parameters. In contrast, neural network parameters have a statistical meaning but no physical
interpretation: these models are referred to as "black-box" models. Consequently, it is not possible to
understand the learned parameters in terms of physical quantities. While the lack of interpretability
is a recognized challenge across many deep learning applications (Lipton, 2018), it is particularly
critical for physical systems due to the immediate material risks (such as equipment damage or safety
hazards) associated with experimental outcomes, where incorrect predictions can lead to tangible and
potentially dangerous consequences. Interpreting the learned model in terms of the system’s physical
quantities is essential for enhancing model explainability (Linardatos et al., 2021; Grojean et al., 2022),
enabling more understandable scientific discovery and making downstream model-based applications
safer (Chakraborty et al., 2017; Carter et al., 2023).

Another important challenge for learning physical systems is uncertainty quantification, which is
closely related to model interpretability. Given the inherent lack of interpretability of neural networks,
extracting a measure of their error is complex. Yet, estimating the error of a statistical model is
crucial, as any decision-making using the model requires not only the model output but also confidence
intervals to estimate the prediction variability and to anticipate possible risks (Abdar et al., 2021).
Moreover, estimating model uncertainty helps to overcome the challenge of data scarcity by selecting
training data in the regions where model uncertainty is greatest (MacKay, 1992).

1.4. Overview of contributions

In this thesis, we explore various challenges related to the application of deep learning in physical
systems. In Chapter 2, we introduce a state-space statistical model and use it to formulate some key
statistical problems, which are discussed in detail in the subsequent chapters. Although these are
separate problems, we will see in the next chapter that they are interconnected and together form a
unified process of statistical modeling of a physical experiment.

The rise of neural networks has led to the development of neural emulators for physical systems,
where neural networks either augment or entirely replace traditional physical models. However, due
to the high cost of conducting physical experiments, the available data is often limited. Additionally,
experimental conditions are likely to vary from one experiment to another, resulting in variability
in the data distribution. To overcome the challenge of data scarcity and make the most of available
data resources, it is necessary to make deep learning models robust to these environmental changes.
In Chapter 3, we address this adaptation problem by incorporating physical prior knowledge into a
deep learning architecture. Concerned with the interpretability issue of neural networks, we propose an
interpretable method where model parameters can be connected to physical parameters. Our method
is applied to learning partial differential equations and to robotics.

Another crucial aspect of learning in a low-data regime is active learning, also known as optimal
experimental design. This approach involves selecting the most informative experiments during data
collection to maximize learning efficiency. In Chapters 4 and 5, we study the experimental design
problem in the context of dynamical systems, where it is referred to as the exploration problem. For
applications to embedded systems, such as in robotics, computational resources are limited, as the
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exploration algorithm must run in real-time environments. Chapter 4 addresses the experimental
design problem in the simplest scenario of linear dynamic models, for which we develop an efficient,
online exploration algorithm with low computational complexity. Chapter 5 extends this exploration
algorithm to nonlinear models, such as neural networks. We demonstrate the application of our
methods to simulated aeronautical and robotic systems, highlighting their practical implications and
effectiveness.

Finally, Chapter 6 studies the data assimilation problem, which is of paramount importance in
geophysics. Data assimilation involves estimating the state of a geophysical system from sparse
observations, collected by various instruments such as satellites, buoys, and ground-based sensors. This
estimation is achieved by finding the most likely state given the available observations and the governing
physical laws. Critically, the large size of geophysical systems involves substantial computational
costs. Additionally, the underlying physics, predominantly fluid dynamics, is inherently complex and
computationally intensive to simulate. Consequently, data assimilation presents a great computational
challenge. Neural networks, with their capability to approximate complex signals at a relatively low
cost, offer promising solutions to enhance the accuracy of data assimilation while significantly reducing
its computational burden. We study a neural data assimilation algorithm and evaluate its performance
on simulated chaotic physical systems.
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Chapter 2

Statistical estimation of physical systems

In this chapter, we establish the mathematical framework that underpins this thesis. Building on this
formalism and drawing on a number of examples, we provide an overview of the different statistical
learning problems addressed in this thesis. We then outline our specific contributions.

Chapter organization This chapter is organized as follows. Section 2.1 introduces the statistical
framework that we will use to model physical systems. Building on this framework, Sections 2.2, 2.3,
and 2.4 briefly introduce three statistical problems related to physical systems, which we address in the
following chapters of this thesis, along with the associated technical challenges. Section 2.5 summarizes
our contributions to these problems.
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2.1. Statistical modeling framework

2.1. Statistical modeling framework

We propose to model physical systems using the state-space representation (Friedland, 2012), which
provides a versatile framework for formulating various problems related to physical systems. This
approach enables us to establish a unified mathematical foundation for addressing the diverse challenges
at the intersection of physics, control theory, statistics, and machine learning.

2.1.1 State-space formalism

A physical system is represented by its state vector x ∈ Rd, encompassing all the physical variables
that characterize it. The state of this system depends on some experimental control variables, or
input, u ∈ Rk, that are chosen by the experimenter. Prior physical knowledge of the system allows us
to predict the state as a function of the control with a model, up to some parameters to be determined
and to some randomness. The model is formalized as a parametric function M(u, θ), with θ ∈ Rn being
the vector of parameters that can be estimated. Additionally, unmodeled effects are accounted for
with a random variable η ∈ Rd. In principle, the model may incorporate physical laws, and may be as
complex as a physical simulator. Depending on the model, the randomness η may take many forms. For
simplicity, we will restrict ourselves to additive model noise, and we model the state as x = M(u; θ) +η.
The assumption of additive noise may not always hold true, and we will discuss it in Section 2.1.3.

Most of the time, physical systems are only partially and indirectly observed: only part of the
variables of x are measured by sensors. The observation process is designed by the experimenter,
so the observations also depend on the system input. The observation process takes the form of a
function h(x, u) of the state and the control, with observational noise ξ. The vector of observation
is then modeled as y = h(x, u) + ξ ∈ Rm. Depending on the applications, the observations may be
more or less sparse and noisy. We assume for simplicity that the observation function h is known,
although it may be only partially known in some cases, such as remote sensing (Liang, 2005) or medical
imaging (Rangayyan and Krishnan, 2024).

Our state-space statistical model then takes the following form:

x = M(u; θ) + η

y = h(x, u) + ξ.
(2.1.1)

We will illustrate our mathematical framework on several examples, from toy physical systems, where
the physics is known, and whose simplicity allows us to clearly highlight our points (Reutlinger et al.,
2018), to more complex real-world use cases.

Example 2.1.1 [Electric point charges and Coulomb’s law] Let us model the electrostatic field created
by n point charges of unknown values fixed at some known locations {ζ1, . . . ζn}. The values of the
electric charges are represented by a parameter vector θ ∈ Rn to be estimated from measurements.
The state consists of the field values everywhere in the domain Ω, which we assume to be modeled by
a grid of d points: Ω = Rd and x = (x(z), z ∈ Ω) ∈ Rd. We assume that the field is fixed throughout
all the experiments with no external randomness: η = 0, so the model does not depend on any control
variables nor on noise. This system is illustrated in Figure 2.1 for a two-dimensional domain: Ω ⊂ R2

and z = (z1, z2). According to Coulomb’s law, the state is modeled as a deterministic parametric
function: x = M(θ) with

M(θ) =
( n∑
j=1

θj
|z − ζj |

)
z∈Ω

∈ Rd. (2.1.2)

Our experiment consists in measuring the field at some chosen location u ∈ Ω, which is the only control
variable of our experiment. Hence, the measurement function is

h(x, u) = x(u) ∈ R. (2.1.3)
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Figure 2.1. Left Electrostatic potential x(z) generated by a set of 4 point charges, located
at {ζj = (±2,±1)}. Right The electrostatic vector field −∇x(z).

The sensors are assumed to be accurate up to some precision ρ, which is modeled with Gaussian
noise: ξ ∼ N (0, ρ2). Our experiment can then be summarized in the state-space form (2.1.1) as follows

x =
( n∑
j=1

θj
|z − ζj |

)
z∈Ω

∈ RΩ,

y ∼ x(u) +N (0, ρ2) ∈ R.

(2.1.4)

We will see in Section 2.2 how this modeling framework allows us to formulate the point charge
estimation as a maximum likelihood problem, which takes the form of a linear regression as (2.1.2) is a
linearly parametrized model.

z1

z2

Figure 2.2. Electrostatic
potential x(z) created by
a capacitor.

Black-box models In Example 2.1.1, prior physical knowledge enables
the field to be modeled by a known function, down to a few physical
parameters. In deep learning, on the other hand, the idea is to model
problems where little to no prior knowledge is available, and that are
too complex to be described by a simple model. The system is then
modeled with a “black box” model, such as a neural network, described by
a large parameter vector θ ∈ Rn (Ljung, 2010). These parameters have no
physical meaning: they can be seen as cursors, which are adjusted to fit
the dataset. The flexibility of such a statistical model makes it possible
to model arbitrarily complex functions from data alone (Cybenko, 1989),
with little prior information about the problem structure, provided that
the training dataset is sufficiently large. With these powerful learning
models on the table, an emerging ambition is to directly approximate
complex physical systems from data, with little to no physical modeling.
The resulting approximators emulating physical systems are called surrogate models, and may then be
used for prediction or control tasks. We will provide a more detailed description of such models in the
following section.

Example 2.1.2 [Laplace equation] Taking the example of electrostatics a step further, we now consider
the electrostatic potential created by an arbitrary distribution of electric charges on Ω, with bound-
aries ∂Ω and boundary condition b(z) for z ∈ ∂Ω. According to Maxwell’s equations, the electrostatic
field solves the Laplace equation, yielding the boundary value problem

∆x = 0 on Ω, x(z) = b(z) on ∂Ω. (2.1.5)

Traditionally, the field is calculated by integrating (2.1.5) numerically, using the physical knowledge of
the partial differential equation. Figure 2.2 illustrates the electrostatic field created by a capacitor,
and computed by the numerical integration of (2.1.5). On the other hand, a surrogate model aims to
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replace the numerical integration of (2.1.5) with a complex parametric model x(z) = f(z; θ) trained on
data (Brunton and Kutz, 2022). In our state-space representation, this may be described by the model

M(θ) =
(
f(z; θ)

)
z∈Ω

(2.1.6)

Unlike the physical model of (2.1.2), where f(z; θ) is a simple, well-identified function of physical
parameters θ, the neural network is a complex function and its parameters θ have a purely statistical
role. The lack of physical structure is compensated for by the model’s high learning expressivity.

The field of scientific deep learning for partial differential equations is vast and a variety of models exist.
Recent advances include neural operators and implicit neural representations, in which the geometry
of the boundary ∂Ω is also taken as an input of the model, allowing for a generalization of the learning
model across different geometries and different boundary conditions (Li et al., 2020; Yin et al., 2023).

2.1.2 Dynamical systems

A large class of physical systems of interest are dynamical systems, where the state changes with time.
The state-space formalism is naturally extended to dynamical systems (Goodwin and Payne, 1977) as
follows. The state is time-dependent and therefore the state-space model evolves with time and may be
defined for each time step. We proceed in discrete time by defining the instantaneous state at time t
as xt, and the global state of the system at time t as the past trajectory x0:t = (x0, . . . , xt) ∈ Rd×(t+1),
consisting of the collection of states at all past times. The time-dependent modelMt(ut; θ) approximates
the transition from one state to the next one. The state-space representation takes the form

xt+1 = Mt(ut; θ) + ηt

yt = ht(xt, ut) + ξt.
(2.1.7)

Example 2.1.3 [Linear-Gaussian dynamical model] The simplest model for dynamical systems is
arguably a time-invariant linear-Gaussian model, that is a model where the transitions from one state
to the next are given by a fixed linear map, with a linear observation function and Gaussian noise:

xt+1 = Axt +But + ηt, ηt ∼ N (0,Σ)

yt = Hxt + ξt, ξt ∼ N (0, R),
(2.1.8)

where ut ∈ Rk is the control input, A ∈ Rd×d and B ∈ Rd×k are transition matrices, H ∈ Rm×d is
the observation matrix, ηt is a Gaussian noise modeling the dynamical effects that cannot be captured
by a linear map and ξt is a Gaussian noise modeling the sensor uncertainty. A linear dynamical model
may describe nonlinear systems in the vicinity of a stable equilibrium, with the model noise accounting
for unmodeled nonlinear effects. Defining θ := (A,B) ∈ Rd×(d+k), the dynamics of (2.1.8) defines a
time-dependent parametric model xt+1 = Mt(ut; θ) + ηt with Mt(u; θ) = Axt +Bu.

Example 2.1.4 [The pendulum] The pendulum is one of physics’ most famous toy systems (Figure 2.3).
Although very simple, it is representative of many characteristics of the dynamical systems that we are
aiming to learn. It can be seen as the basic element of manipulator robots, whose general equations
are more complex but have the same form. Denoting by ϕ1 the pendulum’s inertia, by ϕ2 its weight,
and by τ the applied torque, the pendulum’s angle q obeys an equation of the form

ϕ1q̈ + ϕ2 sin q + friction(q, q̇) = τ, (2.1.9)

where friction(q, q̇) represents the torque applied by friction forces, which are notoriously difficult
to model (Marques et al., 2016). Letting x = (q, q̇), a linear model for the pendulum dynamics
can be obtained by linearizing sin q ' q for |q| � 1, and by modeling the unknown friction (and
potentially other unknown forces) by Gaussian noise η ∼ N (0, σ2). Assuming that only the angle
of the pendulum is measured, with some precision ρ, the resulting model is then linear-Gaussian,
with Σ = σ2Id, H = (1, 0), and R = ρ2Im, and transition matrices A and B, for which we don’t give
explicit expressions here for simplicity.
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Figure 2.3. The actuated pendulum (left) and a trajectory in phase space (right).

The class of linear-Gaussian models has the advantage of being easy to estimate: as we shall see
in Section 2.2 and Section 2.4, the estimation of either the parameters θ or the state x reduces
to the minimization of a quadratic form. Although it can be argued that linear models are too
simple to account for complex physical systems, it should be noted that this simplicity allows efficient
implementation at low cost. Thus, the model’s lack of complexity and its prediction errors can be
compensated for by high-frequency adjustments in a feedback loop. This is how linear models find
operational applications in many complex real-world systems. Examples include the celebrated Kalman
filter (Kalman and Bucy, 1961), and linear model predictive control in robotics (Muske and Rawlings,
1993). Note that linear models may also be allowed to depend on time, with the so-called linear
time-varying systems (Liu, 1997).

In contrast, neural networks are too complex for obtaining closed-form estimators or theoretical
guarantees. However, their high approximation ability may be used to complement or even replace
traditional physical models.

Example 2.1.5 [Learning nonlinear residual physics] As we mentioned in Chapter 1, physical equations
accurately describe the dynamics governed by gravitational forces and inertial effects, but do not take
into account certain complex phenomena such as frictional forces. To obtain a more accurate controller,
we may augment a physical model with a neural network f(x, u; θ). For example, an accurate model
for the pendulum of Example 2.1.4 may be obtained as

xt+1 = Axt +But + f(xt, ut; θ), (2.1.10)

with A and B obtained with the pendulum equation, and f modeling nonlinear phenomena such
as friction. Learning nonlinear residual effects can then considerably enhance the model prediction
accuracy (Zeng et al., 2020; Gao et al., 2024), and plan actions using non-convex optimization (Qin
and Badgwell, 2000).

Example 2.1.6 [Atmospheric model] In meteorology, the atmosphere dynamics can be modeled in the
state space form (2.1.7), with x the physical variables on a grid and, y a vector of sparse observations
and M a simulator of the Navier Stokes equations. The complexity of the problem stems from the size
of the state, with d potentially of the order 107, the low observation rate, and the high computational
cost of simulating the Navier Stokes equations. Moreover, fine-scale phenomena such as cloud formation
cannot be simulated at sub-mesh resolution. The physics is hence approximated by parametric models
called parameterizations, which are parameters θ to be estimated. One of the major impacts of artificial
intelligence is the substitution of deep learning models for part, or even all, of the physical model,
within a fully learned M(x; θ). The resulting surrogate model can then be used for weather forecasting
and data assimilation (Hoyer et al., 2023).
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Figure 2.4. Schematic view of the state-space representation, and the interdependent statistical
problems of system identification, experimental design and data assimilation.

2.1.3 Statistical model

In the remainder of this thesis, we will assume the noise to be additive, centered and Gaussian, both
for the model noise and for the observational noise:

η ∼ N (0,Σ),

ξ ∼ N (0, R).
(2.1.11)

Although the noise distribution may deviate significantly from a Gaussian, the choice of adopting
the normal distribution is the most widespread and lends itself well to a wide variety of calculations,
whether in physics (Stigler, 1981), in signal processing (Mallat, 1999) or in artificial intelligence for
generative models (Ho et al., 2020). Arbitrary noise distributions can be modeled more finely (Legin
et al., 2023), but we shall restrict ourselves to Gaussian noise for simplicity.

Under these assumptions, our state-space formulation (2.1.1) defines the following statistical model

η ∼ N (0,Σ),

ξ ∼ N (0, R),

x|u, θ ∼M(u; θ) + η

y|x, u ∼ h(x, u) + ξ

(2.1.12)

This probabilistic and statistical framework will enable us to mathematically pose various estimation
and decision-making problems in the following sections. Specifically, Sections 2.2, 2.3 and 2.4 describe
three statistical problems related to physical systems and discuss the challenges of applying deep
learning to these problems. Each section follows the same structure. The first subsection introduces a
mathematical formulation of the problem. The second subsection provides a fundamental example in
the case of a linear-Gaussian model, where the problem can be solved analytically. The third subsection
explores the extension of the problem to a nonlinear model. Finally, the fourth subsection discusses
the challenges posed by integrating complex nonlinear models into these problems. The connections
between these problems and the state-space representation is illustrated in Figure 2.4.

2.2. System identification

The first problem that we will consider is system identification, which aims to answer the following
question.

Problem 1 [System identification] “Given a dataset of observations of a physical system y1, . . . , yN
collected from inputs u1, . . . , uN , how can we design and learn a parametric model M(u; θ) for the
system that best predicts y as a function of u?”

The name “system identification" originates from the automatic control community (Ljung, 1986),
and broadly describes the problem of designing and estimating a model for a physical system from
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data. It is therefore a problem as old as the first experiments in estimating physical parameters, and
encompasses everything from the comet trajectory estimation problem of Legendre (1806) to deep
foundation models for scientific machine learning (Subramanian et al., 2024). In this section, we briefly
describe the system identification problem, which we illustrate through the fundamental example of
linear regression. We then discuss the challenges of learning physical systems with neural networks.

Motivation Incorporating deep learning into system identification may considerably enhance modeling
capabilities for physical systems (Ljung et al., 2020). The rise of machine learning has led to a paradigm
shift, where black-box models can be used to predict complex physical systems. While the learning
power of neural networks is widely recognized, we have seen in Section 1 that there are still a number
of limitations for deep learning models to reach an operational status. Therefore, there is still progress
to be made in the field of system identification to bridge the gap between the promise of deep learning
and its limitations in physical system applications.

We now turn to the mathematical formulation of the system identification problem.

2.2.1 Mathematical formulation

The goal of system identification is to design a model for the system observations y, and to estimate
the model’s parameters that best fit the observations. Building on the state-space representation
introduced in Section 2.1, we adopt a probabilistic point of view, and we cast system identification as
a maximum likelihood estimation problem.

We can define the probability of the observations conditioned on the control variable and the parameters:

y|u, θ ∼ p(y|u, θ). (2.2.1)

Following our state-space representation, the observation vector is defined as a function of the unobserved
state x, which itself is a random variable. Therefore, the observation distribution can be computed by
integrating over all the possible states:

p(y|u, θ) =

∫
p(y|x, u, θ)p(x|u, θ)dx. (2.2.2)

We may omit the dependence on the input u when it is not explicitly involved in the calculations, and
denote p(y|θ) instead of p(y|θ, u).

As is customary in statistics, the parameters of the statistical model can be inferred from a set
of observations y1:N := (y1, . . . yN ) ∈ Rm×N , by the so-called maximum likelihood estimation prin-
ciple (Cox, 2006). Specifically, assuming the statistical model (2.2.1), the maximum likelihood
estimator θ̂(y1:N ) is the value of θ that makes the observations y1:N the most likely. We denote
by p(y1:N ) = p(y1, . . . , yN ) the joint probability density for N experiments at observation val-
ues y1, . . . , yN . We denote by D = {(z1, y1), . . . , (zN , yN )} the dataset of input and observation
pairs.

Mathematically, the maximum likelihood estimator solves the following optimization problem

maximize
θ∈Rn

log p(y1:N |u1:N , θ). (2.2.3)

We may formulate maximum likelihood estimation as a minimization problem by defining a loss
function as the negative log-likelihood of the observations (up to constants with respect to θ):

`(θ;D) := − log p(y1:N |u1:N , θ). (2.2.4)
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We may omit the dependence on the dataset D when it is not explicitly involved in the calculations,
and simply write `(θ). Adopting a loss minimization point of view, as is common in machine learning,
the estimation of θ takes the form of the following training objective:

minimize
θ∈Rn

`(θ;D). (2.2.5)

When (2.2.5) admits a unique solution, we shall denote it by

θ̂(y1:N ) := argmin
θ∈Rn

`(θ;D). (2.2.6)

Depending on the model, it may be that (2.2.4) does not admit a unique minimizer, and hence
that (2.2.6) is not well-defined. In this case we will assume that an approximate minimizer can always
be found, and we will denote it by θ̂(y1:N ). We will discuss the minimizing algorithms in the next
sections.

Statistical regression In many cases, the distribution of the data y given an input u can be described
by a deterministic parametric function f(z; θ) of a known explanatory variable z = (u, . . . ) containing u
and possibly other variables about the system’s state. We denote this dependence as

y|z, θ ∼ f(z; θ) + ν, (2.2.7)

where ν is independent noise. Assuming identically distributed centered noise the likelihood factorizes
as

p(y1:N |u1:N , θ) =

N∏
i=1

p(yi|zi, θ)

=

N∏
i=1

pν(f(zi; θ)− yi),
(2.2.8)

where pν denotes the probability density function of ν. The loss function (2.2.4) is then

`(θ) =

N∑
i=1

log pν
(
f(zi; θ)− yi

)
. (2.2.9)

In the remainder, we will assume the noise ν to be normally distributed. As a consequence, the loss
becomes a least-squares cost

`(θ) =

N∑
i=1

(
f(zi; θ)− yi

)2
, (2.2.10)

and the maximum likelihood system identification problem (2.2.3) reduces to a least-squares regression:

minimize
θ∈Rn

N∑
i=1

(
f(zi; θ)− yi

)2
. (2.2.11)

Example 2.2.1 [Learning the electrostatic field from independent sensors] In Examples 2.1.1 and 2.1.2,
the observation at the sensor position z := u is modeled as y = f(z; θ) + ξ, with the different sensors
assumed to be independent and with Gaussian observational noise ξ. Hence, maximum likelihood
estimation takes the form of (2.2.11).
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Example 2.2.2 [Identification of dynamical systems] For dynamical systems, system identification
consists in finding the transition model that best fits the trajectory observations y0:T . Let f(z; θ)
denote the model, with z := (x, u) the state-action pair. Let us assume for simplicity that the states
are fully observed: yt = xt, i.e. h(x) = x, with no observational noise ξ = 0, and scalar model error
covariance ηt ∼ N (0, σ2Id). The collected observations at a given time t consist of y0:t = (x0, . . . , xt).
Even though the trajectory observations are not mutually independent, we show here that system
identification can be cast as a regression problem under our current assumptions. Since our physical
model postulates independent additive Gaussian noise at each time step s, the distribution of a
trajectory x0:t can be computed using the probability chain rule, as xs+1|xs, us, θ ∼ f(zs; θ) + ηs. We
obtain

p(x0:t|u0:t−1, θ) =

t−1∏
s=0

p(xs+1|xs, us, θ)

=

t−1∏
s=0

1√
2πσ2

exp

(
− 1

2σ2
‖f(xs, us; θ)− xs+1‖2

)
.

(2.2.12)

Therefore, system identification here takes the form of an online regression problem, with the time-
dependent loss function

`t(θ) =

t−1∑
s=0

1

2σ2
‖f(zs; θ)− xs+1‖2 . (2.2.13)

In the remainder of this thesis, we will adopt the notation θ̂(z0:t) for the minimizer of (2.2.13) in the
case of dynamical systems.

Minimization algorithm In this regression setting, it is a priori unclear whether a unique solution
of (2.2.11) exists. In the next section, we will see that it is the case for linear models. For nonlinear
models, we will discuss the popular gradient-based minimization algorithms, and how they find
approximate solutions.

Model evaluation Once the parameters are estimated and θ̂(y1:N ) is found, the obtained model can
be used to make predictions. We define the evaluation error of a parameter value θ as the prediction
error of the model on a test dataset (z, y) as

ε(θ) := E
[
‖f(z; θ)− y‖2

]
, (2.2.14)

where (z, y) follows the data distribution and is drawn independently of the training data.

2.2.2 Linear system identification

We begin by describing the fundamental case of linear system identification, where the model is linear
in its parameters: f(z; θ) = θ>v(z), with v(z) a known function. The least-squares loss (2.2.15) is then
a quadratic cost:

`(θ) =

N∑
i=1

1

2

(
θ>vi − yi

)2
, (2.2.15)

where vi = v(zi), leading to the linear regression problem

minimize
θ∈Rn

N∑
i=1

(
θ>vi − yi

)2
. (2.2.16)

Linear statistical models often arise when a certain structure of the problem is known a priori, and
identifying the system comes down to estimating linear coefficients, as we illustrate in the two following
examples.
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Example 2.2.3 [Estimation of electric point charges] Following our state-space representation (2.1.2),
we may derive the likelihood of our model for the point charge system of Example 2.1.1. We see
from (2.1.2) that y = f(u; θ) + ξ, with

f(z; θ) =

n∑
j=1

θj
|z − ζj |

∈ R. (2.2.17)

The regressor f(z; θ) is linear with respect to θ, and hence we may express it in the form

f(z; θ) = θ>v(z), v(z) = (1/|z − ζj |)1≤j≤n ∈ Rn. (2.2.18)

Example 2.2.4 [Linear identification of dynamical systems] The dynamical system identification
setting of Example 2.2.2 considerably simplifies in the case of a linear-Gaussian model, as intro-
duced in Example 2.1.3. Recalling that z = (x, u), a linear model takes the form f(z; θ) = θ × z,
with θ = (A,B) ∈ Rd×(d+k). The resulting loss takes the form

`t(θ) =

t−1∑
s=0

1

2
‖θ × zs − ys+1‖2 . (2.2.19)

Here again, we obtain the ordinary least squares cost (2.2.15) summed over the d rows of θ. Linear
models are a popular choice for approximating dynamical systems, even though the dynamics are
known to be nonlinear. System identification then consists in finding the model that best fits the
observations among the class of linear models.

In the two previous examples, the linear model results in a quadratic cost function, whose minimization
can be performed in closed form. In particular, the existence and uniqueness of a global minimizer are
guaranteed by the convexity of the cost function. Note that such a guarantee is no longer valid when
the model is not linear.

Proposition 2.1 [Ordinary least-squares estimator] Assuming that the vi span Rn, there exists a
unique solution to linear regression problem (2.2.16). This solution is called the ordinary least squares
estimator and admits the following expression

θ̂(y1:N ) :=
( N∑
i=1

viv
>
i

)−1 N∑
i=1

yivi. (2.2.20)

Assume that there exists θ? ∈ Rn such that yi = vi
>θ? + ξi. The difference between the model

parameters and the true parameters can be expressed as

θ̂(y1:N )− θ? =
( N∑
i=1

viv
>
i

)−1 N∑
i=1

ξivi. (2.2.21)

The ordinary least-squares estimator of Proposition 2.1 has a fundamental importance in statistical
estimation and is used in countless scientific applications, from Gauss’ and Legendre’s orbit estimation
problems to today’s robots.

In the case where the observation distribution follows a linear model with a true parameter value θ?, Propo-
sition 2.1 also provides a formula comparing the least-squares estimator to θ?. We may then examine
the statistics of the estimator. In particular, the following result shows that the ordinary least-squares
estimator is unbiased, and gives an expression of the parameter covariance.
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Proposition 2.2 [Parameter covariance] Assume that the (zi) are deterministic, that the observations (yi)

are distributed following yi = vi
>θ? + ξi with ξ ∼ N (0, ρ2). Then θ̂ follows a Gaussian distribution. It

is an unbiased estimator of θ?, and the parameter covariance matrix is

E
[
(θN − θ?)(θN − θ?)>

]
= ρ2

( N∑
i=1

viv
>
i

)−1 ∈ Rn×n. (2.2.22)

In particular,
E[‖θN − θ?‖2] = Tr

(
E
[
(θN − θ?)(θN − θ?)>

])
= ρ2Tr

[( N∑
i=1

viv
>
i

)−1]
.

(2.2.23)

Proposition 2.2 gives a closed-form expression for the parameter error. For evaluating a linear model,
we may wonder about the connection between the parameter error and the prediction error (2.2.14).
The following result shows how these two mathematical quantities are related.

Proposition 2.3 [Evaluation error for a linear model] Assuming a linear model f(z; θ) = θ>v(z) and
an evaluation set with isotropic covariance matrix E[z′z′

>
] = κ2In, the prediction error is an affine

function of the parameter error:
ε(θ) = ρ2 + κ2‖θ − θ?‖2. (2.2.24)

Together, Propositions 2.2 and 2.3 give a closed-form formula for the prediction error (2.2.14) for
linear models, thus showing that the accuracy of a linear model can be evaluated by computing the
parameter error. Additionally, we will see in Section 2.3 that this formula allows us to analyze the
optimal experimental design problem, that is the problem of choosing the inputs zi that minimize the
prediction error.

2.2.3 Nonlinear system identification and deep learning

While linear models guarantee a unique solution to the regression problem (2.2.11), this is not the case
for more complex models. When f is no longer linear in θ, the cost function is generally non-convex,
and the uniqueness of the solution no longer holds. Neural networks, in particular, are complex
functions of their parameters, and it is well known that their loss landscapes are highly non-convex
with numerous local minima.

Algorithm 2.1 Gradient descent algorithm for
loss minimization
input model f(z; θ), initial parame-
ters θ ∈ Rn, learning rate γ, dataset D
output learned parameters θ̄
while not converged do

compute `(θ;D)
update θ ← θ − γ∇`(θ)

end while

Minimization algorithm In this non-convex minimiza-
tion framework, it is common to use the gradient de-
scent algorithm, or its variations to approach the min-
imum. Theoretical guarantees on minimization being
out of reach, the practical performance of the algo-
rithm becomes crucial for the success of system iden-
tification. In the deep learning community, stochastic
versions of gradient descent are predominantly used,
such as the well-known ADAM algorithm (Kingma
and Ba, 2017). Interestingly, these methods can be
seen as approximations of the Gauss-Newton minimiza-
tion algorithm (Gauss, 1877), which was introduced
in context of parameter estimation. They do so by
approximating the full dataset with random samples or batch of samples at each iteration. We will not
go into the details of these variations, it is important to note that they often succeed in approximating
the minimization of a non-convex cost, provided the number of parameters is large enough (which
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requires a proportionally large number of data to avoid overfitting). We refer to the book of LeCun
et al. (2015) for more details.

In the remainder of this thesis, we will refer to a neural network as any parametric function f(z; θ) that
is differentiable with respect to its parameter vector θ and whose gradient can be computed efficiently,
fitting within the gradient descent loss minimization framework of Algorithm 2.1.

2.2.4 Bayesian learning

In the previous section, we discussed the frequentist approach to system identification, where the goal
is to estimate the parameters θ that best fit the observations y and input z, according to a pre-defined
cost function. This approach, while efficient, provides point estimates of θ and does not directly
quantify the uncertainty of these estimates.

The Bayesian approach, by contrast, treats the parameters θ as random variables and computes a
posterior distribution over them based on the observations. In this framework, system identification
involves both estimating the parameters and quantifying the uncertainty associated with these estimates.
The prior distribution p(θ) encodes any previous knowledge or assumptions about the parameters, and
the likelihood p(y|θ) describes how likely the observed data is given the parameters. The posterior
distribution p(θ|y) is then obtained via Bayes’ theorem:

p(θ|y) =
p(y|θ)p(θ)
p(y)

. (2.2.25)

Example 2.2.5 [Bayesian linear regression] For Bayesian linear regression, where the model is linear in
parameters, closed-form solutions for the posterior exist under conjugate priors. Assume a Gaussian
prior θ ∼ N (µ0,Σ0). Adopting the notations of Section 2.2.2, and introducing

GN :=

N∑
i=1

viv
>
i , (2.2.26)

the parameter posterior is a Gaussian distribution

θ|y1:N ∼ N (µN ,ΣN ), (2.2.27)

with
ΣN = (Σ−1

0 +
1

σ2
GN )−1 (2.2.28)

and

µN =
1

σ2
ΣN

N∑
i=1

yivi. (2.2.29)

This approach provides not only a point estimate (typically the mean of the posterior) but also a
measure of uncertainty (such as the posterior variance).

Bayesian methods are particularly useful for uncertainty quantification, as they allow for a probabilistic
interpretation of the parameters, which is essential when dealing with noisy data or when the system’s
dynamics are not perfectly modeled. For complex physical models for which, unlike linear models, the
Bayesian formulas cannot be computed in closed form, more advanced techniques exist for parameter
inference such as simulation based inference (Cranmer et al., 2020).

In the context of physical systems, uncertainty quantification helps to ensure robustness and reliability
in the presence of unmodeled dynamics and disturbances (Chowdhary et al., 2014). For instance,
Bayesian methods can account for model mismatch and help in predicting the system’s behavior even
when the environment changes, as it provides an explicit measure of how confident we are in the
identified parameters. A comprehensive introduction to these methods can be found in the work
by Ljung (1998) on system identification, where Bayesian techniques are discussed alongside frequentist
methods, and in (Peterka, 1981).
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2.2.5 Challenges

The high cost of data collection on physical systems means that the amount of available data N is
limited. Training neural network architectures with hundreds of millions of parameters n ∼ 108, as is
now common practice for language or images (Jiang et al., 2023), is then out of reach. One way of
compensating for this lack of data is to incorporate prior physical knowledge into the model (Karniadakis
et al., 2021).

Additionally, the interpretability of learning models and the quantification of uncertainty are crucial
challenges when dealing with machine learning models. As we pointed out in Section 1, the mathematical
value f(z; θ) predicted by a neural network does not include any indication of the model’s certainty
about the prediction. Furthermore, the neural network’s parameter vector θ has no physical meaning.
When dealing with surrogate models for physical systems, this can lead to a poor understanding of the
network’s predictions, which may be critical for downstream applications. Here again, incorporating
physical knowledge and reducing the model complexity is key to improving interpretability (Ljung,
2010; Lovo et al., 2023).

Another important issue, which we will not study in this thesis, is the problem of simulation-based
inference, where the physical model M is too complex for a maximum likelihood parameter to be
found. This leads to challenging inverse problems, for which new numerical methods are required for
inferring the model parameters (Cranmer et al., 2020).

2.3. Optimal experimental design

One of the subfields of system identification that will be of particular interest to us is that of experimental
design, which aims to answer the following question.

Problem 2 [Optimal experimental design] “Given a parametric modelM(u; θ) for the system’s state, how
to choose the inputs u that will produce the most informative data y for estimating the parameters θ?”

In the machine learning community, this problem is also referred to as active learning, active system
identification or active data selection (Settles, 2009). First note that this is a decision problem rather
than a learning problem: the learning model is assumed to be fixed, and the question concerns the choice
of inputs u. Intuitively, measuring the system at randomly chosen points is not optimal for estimation.
Instead, a strategy that samples the points where the model is uncertain should considerably improve
estimation quality. The aim is to quantify the information provided by an experiment, then choose
the input that maximizes this information under the constraints of the problem. In this section, we
introduce the mathematical formalism of optimal experimental design, and discuss the challenges of
optimal experimental design for complex learning models.

Motivation As we saw in Section 1, learning algorithms typically work in a low data regime because
of the high cost of physical experiments. Therefore, it is crucial to optimize the dataset quality during
the experiments. Several mathematical quantities come to mind for this purpose. In the deep learning
community, model uncertainty is quantified using Bayesian methods, or by estimating model variability
using ensemble techniques (Abdar et al., 2021). Although theoretically effective, these methods are
computationally heavy, as they involve evaluating the model a large number of times to approximate
parameter statistics. Incorporating uncertainty quantification into an experimental design optimization
problem with a well-founded theoretical ground, while maintaining computational efficiency, is therefore
a challenge.

We now turn to the mathematical formulation of the optimal experimental design problem.
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2.3.1 Problem formulation

The goal is to find the experiments from which the trained model minimizes the evaluation error (2.2.14).
We adopt a sequential point of view, where the experimenter runs a sequence of experiments, indexed
by 1 ≤ i ≤ N . For each experiment, an input ui is chosen according to a policy Π : y1:i−1, θi−1 7→ ui
mapping past observations and the current parameter estimate to the next input. The policy models
the experimenter’s design strategy (Chernoff, 1972). We will assume that we can formulate the
system identification problem as a regression, as in (2.2.11). The model parameters are estimated by
maximum likelihood, and we assume that an algorithm is available to compute the maximum likelihood
estimator θ̂ : (z1:i, y1:i) 7→ θi. This estimator is a random variable, as a function of the experimental
observations. Optimal experimental design aims to find the experiments providing the most informative
experiments, yielding the best parameter value in terms of prediction error (2.2.14). Mathematically,
this objective may be formulated as

minimize
Π∈P

E[ε(θN )|Π], (2.3.1)

where P is the set of possible policies, and where the expectation is an average over the experimental
observations and the randomness induced by the policy. The sequential design procedure is summarized
in Algorithm 2.2.

Of course, ε(θ) is an unknown function in general as it depends on a potentially complex parame-
terization f(z; θ) and on the true data distribution. The aim of optimal experimental design is to
derive general mathematical criteria that quantify the informativeness of an experiment. As we will
see in Section 2.3.3, this can be computed using the Fisher information matrix. Before turning to
information-theoretic considerations, we first examine the question in the simplest learning example:
linear regression.

Algorithm 2.2 Sequential experimental design

input model f , estimator θ̂, first estimate θ0,
policy Π, number of observations N
output estimate θN
for 1 ≤ i ≤ N do

choose ui = Π(y1:i−1|θi−1)
run an experiment with input ui, observe yi
update θi = θ̂(z1:i, y1:i)

end for

2.3.2 Active linear regression

Let us consider a linear model y = θ>v(z) + ξ, describing for example electrostatic field measurements
from unknown point charges, as we have seen in Example 2.1.1. The experimenter selects N measure-
ment points u1 = z1, . . . , uN = zN , which should be chosen to make the estimation as accurate as
possible, so as to minimize the final estimation error (2.3.1). We have seen in Proposition 2.3 that
minimizing the evaluation error is in this case equivalent to minimizing the parameter error ‖θ − θ?‖2:

minimize
z1,...,zN∈Z

E[‖θ̂(z1:N , y1:N )− θ?‖2] (2.3.2)

where Z is the set of possible locations for the sensor. Furthermore, we see from Propositions 2.1
and 2.2 that this mean squared error may be computed in closed form for the least-squares estimator
as a function of the inputs zi. Therefore, minimizing the test error is equivalent to minimizing the
variance of the maximum likelihood estimator, which may be computed from (2.2.22). Our optimal
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experimental design objective (2.3.1) for linear regression then takes the following form

maximize
z1,...,zN∈Z

− Tr
[( N∑

i=1

vivi
>)−1

]
with vi = v(zi).

(2.3.3)

This is a standard, non-convex optimization problem, which may be solved using numerical meth-
ods (Fedorov, 2010). The optimal policy is then the policy returning the optimal inputs.

Quantifying the information with an exact formula in (2.3.3) is enabled by the properties of linear
systems. Specifically, we used linearity to reduce the prediction squared error (2.2.14) to the parameter
estimation error ‖θ − θ?‖2 in (2.3). We then used the closed forms of linear regression, and the
assumption of deterministic z, to calculate the expected squared error (2.2.22) with Proposition 2.2.
For a model where the regression variables z are not deterministic, Proposition 2.2 does not hold and
deriving the expected parameter error may not be straightforward. For a nonlinear model, the very
notion of parameter error does not necessarily make sense, as there is no guarantee that there is a “true”
interpretable parameter vector θ? to compare with.

However, there is another interpretation to the criterion obtained in (2.3.3). The expected covariance
matrix is also the inverse of the Hessian of the cost function (2.2.15), i.e. the negative Hessian of the
log-likelihood. In principle, this quantity is easier to compute. In the next section, we will build on
this observation and generalize the previous uncertainty measure to arbitrary models.

2.3.3 The Fisher information matrix

We want to measure model uncertainty in the case where the expected prediction error of (2.3.1) cannot
be computed in simple form. This may happen for a linear model when the regression variables are not
deterministic but have some randomness, as in the linear dynamical systems addressed in Chapter 4.
In the most general scenario, no structural assumption is made on the system identification model,
which may be highly nonlinear and as complex as a deep neural network. The ground-truth value of
the parameter θ? is thus not well-defined, and computing the prediction mean squared error 2.2.14 is
out of reach.

To study uncertainty and active learning in complex statistical models, we introduce some information-
theoretic considerations that make no structural assumptions about the model and the data distribution.
We refer to the work of MacKay (1992) for more details. Assuming a sequential decision-making
algorithm as in Algorithm 2.2, the log-likelihood is approximated at each iteration i by its second-order
expansion about the current maximum likelihood estimator θi, as

log p(y|z, θ) ' log p(y|z, θi) + (θ− θi)>∇θ log p(y|z, θi) +
1

2
(θ− θi)>

∂2

∂θ2
log p(y|z, θi)(θ− θi), (2.3.4)

where we have assumed that the likelihood function is twice differentiable. The estimator uncer-
tainty is then measured by the local curvature of the likelihood function near the current esti-
mate ∂2p(y|z, θi)/∂θ2, which is formally defined as the Fisher information matrix.

Definition 2.1 [Fisher information matrix] Given observations y and a parameter vector θ, the observed
Fisher information matrix (Gelman et al., 2004) is defined as the following data-dependent matrix:

I(z, y; θ) := − ∂2

∂θ2
log p(y|z, θ) ∈ Rn×n. (2.3.5)

Note that I(y; z, θ) is a positive semi-definite matrix. Now, for a policy Π, the Fisher information is
defined as the expected value of the observed Fisher information at the final estimate θN over the
possible observations, assuming parameter θ and using policy Π:

Ī(θ,Π) := E [I(z1:N , y1:N ; θN )|θ,Π] . (2.3.6)
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Note that in the equation above, θN is a random variable of the observations θN = θ̂(z1:N , y1:N ), whose
computation may be very difficult in general. In practice, this parameter value may be approximated
with the current estimate θi at the ith iteration of the sequential experimental design procedure.

Remark 2.1 [Bayesian interpretation] From a Bayesian point of view, (2.3.4) is a Gaussian approximation
of the posterior distribution p(θ|z, y). The Fisher information may then be interpreted as the expected
covariance matrix of this posterior distribution, whose inverse represents the posterior confidence
intervals. Further details about Bayesian experimental design can be found in (Chaloner and Verdinelli,
1995).

In Figure 2.5, we provide an illustration of the observed Fisher information matrix at the maximum
likelihood estimate θi, showing its interpretation in terms of curvature.

The Fisher information matrix gives us a natural criterion for our experimental design problem. The
local curvature of the likelihood at parameter θ can be measured with a scalarization Φ : Sn(R)→ R+

of the Fisher information Ī, which is a symmetric positive matrix. These scalarization may also be
expressed in terms of the eigenvalues of Ī. In optimal experimental design theory, these functions are
referred to as optimality criteria. Some of these criteria are introduced in Table 2.1. We refer to the
work of Pukelsheim (2006) for more details.

These information-theoretic quantities being defined, we may now state the sequential optimal experi-
mental design problem as an information maximization. Given a parameter estimate θ, the policy is
chosen to maximize the expected curvature of the likelihood function knowing θ:

maximize
Π∈P

Φ(Ī(θ,Π)), (2.3.7)

where P is the set of possible policies. In our sequential experimental design framework of Algorithm 2.2,
the model parameters are approximated with a sequence of iterates θi. Therefore, the policy may be
refined at each iteration by solving a sequence of objectives

Πi ∈ argmax
Π∈P

Φ(Ī(θi,Π)). (2.3.8)

We will see applications of this sequential information-maximizing objective to controlled dynamical
systems in Chapters 4 and 5.

Remark 2.2 Following the Bayesian interpretation of Remark 2.1, it can be shown that objective (2.3.7)
is equivalent to maximizing the expected information gain in Bayesian optimal design (Lindley, 1956;
MacKay, 1992).

Remark 2.3 From an optimization perspective, we note that the observed Fisher information (2.3.5)
is also the Hessian of the training loss (2.2.4). Hence, our optimal experimental design objective also
has the interpretation of seeking experiments that sharpen the loss landscape, confirming the intuition
that an informative experiment discriminates between different plausible values of θ.

θ

log p(y|z, θ)

θN

I−1(z1:N , y1:N ; θN)

I−1(z′1:N , y
′
1:N ; θN)

Figure 2.5. Curvature of the log-likelihood function around the maximum likelihood estimator θN
for two sequence of experiments (z1:N , y1:N ), in blue, and (z′1:N , y

′
1:N ), in red. The second experiment

yields a greater curvature of the log-likelihood, and hence is more informative for the estimation of θ.
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Table 2.1. Alphabetical design criteria, seen as a function of the information matrix I, or as a function
of the eigenvalues λ1, . . . , λn of I.

Criterion Φ(I) Φ(λ1, . . . , λn)

A-optimality −TrI−1 −
(
1/λ1 + · · ·+ 1/λn

)
D-optimality log det I log λ1 + . . . log λn

E-optimality minλ(I) λ1

The optimal experimental design problem (2.3.7) gives us an optimization objective that is valid for
an arbitrary parametric model, and independent of the model and of any knowledge regarding the
distribution of (z, y), unlike (2.3.1). We will see in the following example that this is a generalization
of the linear experimental design problem (2.3.3) to nonlinear parameterizations.

Example 2.3.1 [Active linear regression] Back to our linear regression model, we recall that the
log-likelihood of the observations is

log p(y1:N |z1:N , θ) =

N∑
i=1

1

2ρ2

(
θ>zi − yi

)2 −N√2πρ2, (2.3.9)

from which we obtain

I(z1:N , y1:N ; θ) =
1

ρ2

N∑
i=1

ziz
>
i . (2.3.10)

For a linear model, we note that the observed Fisher information depends neither on the parameter θ,
nor on the observation values y1:N . We also see that the information matrix coincides with the inverse of
the parameter covariance matrix (2.2.22), i.e. the precision matrix. Therefore, the optimal experimental
problem coincides with (2.3.3), with Φ the A-optimality criterion. This is hardly surprising, since in
the case of an exactly linear model, approximation (2.3.4) becomes exact and the Fisher matrix is
therefore exactly the posterior precision matrix. Importantly, (2.3.9) shows that we have a closed-form
expression for our experimental design objective in the case of linear models, even in the case where
the covariates zi are random variables.

Finally, let us mention that, while computing the parameter covariance is in general out of reach
for nonlinear models and the equality between Fisher information and the estimator covariance is
no longer true, there is still an inequality between these two quantities, known as the Cramér-Rao
bound (Cramér, 1999).

2.3.4 Bayesian experimental design

In the previous section, we introduced experimental design from a frequentist point of view, where the
goal is to choose the experimental inputs ui that maximize the Fisher Information Matrix in order to
minimize the uncertainty in the parameter estimates θ. This approach relies on the assumption that
we are designing the experiment to gather the most informative data under a given model, treating
the parameters as fixed but unknown.

The Bayesian approach to experimental design offers a more flexible framework by incorporating prior
knowledge about the parameters θ in the design process. In Bayesian experimental design, the goal is
to optimize the choice of inputs not just to minimize the posterior uncertainty about the parameters,
but to balance this uncertainty with prior beliefs about the parameters.

The central idea is to maximize the expected information gain, measured as the difference between the
prior and the posterior distributions over θ, as opposed to relying solely on the Fisher information
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matrix, which is based on point estimates. This allows for a more global exploration of the parameter
space and incorporates uncertainty in both the data and the model.

More formally, in Bayesian experimental design, we aim to select the experimental conditions u that
maximize the expected utility EI(u) with respect to the posterior distribution. A common utility
function is the Kullback-Leibler divergence between the prior p(θ) and the posterior p(θ|y), which
quantifies how much information the experiment is expected to add about θ. This can be expressed as:

EI(u) = E [D(p(θ|y, u), p(θ))] , (2.3.11)

where D is the Kullback-Leibler divergence (Kullback, 1997), and the expectation is taken over the
possible observations y.

Example 2.3.2 [Bayesian experimental design for linear models] When the data model is linear, as
in Example 2.2.5, we may compute the expected utility and find

EI(u) =
1

2
(log det ΣN − log det Σ0). (2.3.12)

Using the posterior formula for ΣN , we observe that maximizing this quantity is equivalent to D-optimal
design in the frequentist framework.

Bayesian experimental design can be interpreted as an extension of frequentist optimal experimental
design, where the prior covariance is combined with the information gained from the experiment.
Chaloner and Verdinelli (1995) provide a comprehensive introduction to Bayesian experimental design,
including its theoretical foundations and applications.

2.3.5 Challenges

Modern methods for Bayesian optimal experimental design express the information gain brought by
an experiment as an expectation over the possible outcomes. The resulting objective is approximated
with nested Monte Carlo sampling techniques, presenting severe computational issues (Rainforth et al.,
2024). The approach that we presented in this section is based on the Fisher information may be seen
as a frequentist counterpart to Bayesian experimental design (Cox, 2006), and has the advantage of
being more straightforward to compute.

Yet, computing and optimizing the Fisher information for arbitrary regression models is still challenging.
Unlike linear regression, where the model uncertainty can be expressed in closed form, nonlinear models
make the computation of (2.3.5) more difficult. Indeed, the latter requires second-order differentiation,
which may be prohibitive for complex models such as neural networks. Moreover, the randomness
induced by the physical system may also make the expectation of (2.3.6) non-trivial. Additionally, there
is the question of solving the non-convex optimization problem (2.3.7), which can be computationally
very costly. In physical systems, these challenges may be compounded by the small computational
budget imposed by some applications, such as embedded systems, where all calculations of Algorithm 2.2
must be carried out in real time.

Given these computational constraints, it is crucial to find efficient and realistic approximations
for calculating model uncertainty, and to obtain an efficient iterative experimental design policy
following Algorithm 2.2. We will see applications to dynamical systems in Chapter 4 and in Chapter 5.

2.4. State estimation and data assimilation

Finally, the last statistical problem that we will consider is the state estimation problem.

Problem 3 [State estimation] “Given a model M encoding prior information of the system’s physics,
and partial and sparse observations y of an unknown state vector x, how to recover the most likely
estimation of the state x̂(y)?”
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In geosciences, this problem is known as data assimilation (Bouttier and Courtier, 2002). In the control
community and robotics, it is referred to as state estimation or filtering (Särkkä and Svensson, 2023).
It is connected to many interesting mathematical problems, such as observability (Levin and Narendra,
1996; Bernard et al., 2022) and uncertainty quantification (D’Elia and Veneziani, 2013). In this section,
we introduce a mathematical formulation of the data assimilation problem, which we illustrate with the
simple example of Gaussian quadratic interpolation. We then discuss the applications and challenges
of deep learning for data assimilation.

Motivation State estimation is of paramount importance for many physical applications. For any
forecasting problem, such as numerical weather forecasting (Simmons et al., 1989) or model-based con-
trol (Tedrake, 2022), an accurate prediction requires a good estimate of the starting point: tomorrow’s
weather forecast is based on today’s weather conditions, which should hence be estimated as accurately
as possible. The state estimation problem is considerably hard to analyze for nonlinear models, and
the numerical methods for solving it may be computationally heavy. As neural networks are becoming
an increasingly popular tool to model physical systems with high generative capabilities (Ongie et al.,
2020), they may become a powerful tool to recover a physical signal from sparse observations at low
cost.

We now turn to the mathematical formulation of data assimilation problem.

2.4.1 Problem formulation

The aim of data assimilation is to reconstruct a state x ∈ Rd from partial noisy measurements y ∈ Rm
of that state (Bouttier and Courtier, 2002; Bocquet et al., 2014). As the measurements may be sparse,
we cannot generally hope to recover the state as a function of the data alone. Indeed, for a given
observation vector y, a large number of states are compatible, making data assimilation an inverse
problem. To reconstruct the state, we need to supplement the partial observations with another
source of prior information on the state, which comes from our physical or statistical knowledge of the
problem.

The data assimilation problem is then as follows. Given partial observations y and prior information
on the state, the aim is to estimate the most probable underlying state x. Using our state-space
formulation, the Bayesian probabilistic framework lends itself well to the mathematical formalization
of the problem. We assume that the theoretical information about the physics is captured by a prior
distribution on the state x ∼ p(x), which me for example depend on the state model M introduced
in Section 2.1. We recall that the noisy, partial observations of x are modeled as y|x ∼ h(x) + ξ,
with a known observation process h and a Gaussian additive noise ξ ∼ N (0, R) independent of x.
Then, data assimilation can be seen as the estimation of the state maximizing the state posterior
distribution p(x|y) = p(x)p(y|x)/p(y), that is

maximize
x∈Rd

log p(x|y). (2.4.1)

Let U(x) = − log p(x). Applying Bayes’ formula and taking the negative logarithm, the maximum a
posteriori estimation problem (2.4.1) takes the form

minimize
x∈Rd

U(x) +
1

2
‖h(x)− y‖2R−1 , (2.4.2)

where we have adopted the notation ‖z‖B = z>B−1z for a positive definite matrix B.

2.4.2 Quadratic least-squares estimation

The first approach considered for data assimilation is naturally that of a linear-Gaussian model, where
computations may be carried out in closed form. Assuming a Gaussian prior on the state x ∼ N (µ, P )
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Figure 2.6. Nonlinear pendulum trajectory (black) reconstructed (blue) from sparse angular observa-
tions (×).

and a linear observation function h(x) = Hx, with H ∈ Rm×d, the variational Bayesian formulation
for data assimilation (2.4.1) becomes a quadratic least-squares problem:

minimize
x∈Rd

1

2
‖x− µ‖2P−1 +

1

2
‖Hx− y‖2R−1 , (2.4.3)

whose solution may be computed in closed form as follows.

Proposition 2.4 [Optimal quadratic least-squares interpolation] The maximum a posteriori solution
of (2.4.3) takes the form

x̂(y) := µ+K(y −Hµ), (2.4.4)

with the Kalman gain
K = (P−1 +H>R−1H)−1H>R−1 ∈ Rm×d, (2.4.5)

which is also equal to
K = PH>(HPH> +R)−1. (2.4.6)

The quadratic least-squares estimator formula (2.4.4) holds for a Gaussian prior distribution, which
may seem restrictive from a deep learning point of view: unlike complex deep generative models, Gaus-
sian distributions cannot capture complex multimodal signal distributions, such as natural image
distributions (Ruderman and Bialek, 1993). However, Gaussian distributions can still capture quite
complex behaviors in the case of dynamical systems, where the so-called linear Gaussian models gave
rise to widely used state estimation algorithms such as the celebrated Kalman filter (Kalman and
Bucy, 1961), with a wide spectrum of applications, ranging from robotics to meteorology (Tedrake,
2022; Bouttier and Courtier, 2002). For nonlinear systems, the linear-Gaussian framework may be
applied sequentially by linearizing the model (Talagrand and Courtier, 1987; Tassa et al., 2014). Many
examples could be presented to demonstrate the power of linear quadratic models. The following
illustrates the smoothing problem for linear dynamical system.

Example 2.4.1 [Kalman smoothing] Let us assume a linear dynamical model as introduced in Exam-
ple 2.1.3, with Gaussian model error ηt ∼ N (0,Σ), with x0 = 0 and ut = 0 for simplicity, and with a
fixed model parameter θ ∈ Rd×d. Then the trajectory distribution p(x0:T ) is Gaussian. Indeed, by the
probability chain rule,

p(x0:T ) =

T−1∏
t=0

1√
2π|Σ|

exp

(
−1

2
‖θ × xt − xt+1‖2Σ−1

)
. (2.4.7)

We see that the log-likelihood of the trajectory distribution log p(x0:T ) is a quadratic form, hence
showing that x0:T is normally distributed. Therefore, a temporal signal on a fixed time interval x := x0:T

assumed to follow linear dynamics may be reconstructed from linear observations y = Hx0:T with
the closed-form formula of Proposition (2.4). The state posterior estimation in this linear-quadratic
dynamical setting is called Kalman smoothing (Särkkä and Svensson, 2023). Figure 2.6 shows the
result of Kalman smoothing for a nonlinear pendulum for a full trajectory from sparse observations,
with the Gaussian prior obtained from the linearized pendulum dynamics.
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2.4.3 Bayesian state estimation

In classical state estimation, the focus is often on finding the most likely state x that minimizes a cost
function based on the observations y, such as in maximum likelihood estimation. This approach results
in a point estimate of the state, ignoring the uncertainty associated with the estimate.

In contrast, Bayesian state estimation provides a probabilistic framework where the goal is not to find
a single best estimate, but rather to sample from the posterior distribution p(x|y) which incorporates
both the data and prior knowledge about the state. This approach yields a full distribution over possible
states, allowing us to estimate not only the most probable state but also the uncertainty and credibility
intervals around that state. For climate applications, this is particularly useful as the nonlinearity
of the underlying chaotic systems yields complex multimodal posterior distributions (Epstein and
Fleming, 1971).

For linear systems with Gaussian noise, the Kalman filter provides an optimal Bayesian estimate
by producing a Gaussian posterior distribution for the state, as seen in Example 2.4.1. When the
system is non-linear, the standard Kalman filter becomes inadequate. In such cases, extensions like
the Ensemble Kalman Filter (Evensen, 2003) use an ensemble of state estimates to approximate the
posterior distribution, making it a computationally efficient alternative for large-scale systems (Bocquet
et al., 2014). However, these methods rely on Gaussian assumptions that may not hold for more
complex systems. In such cases, particle filters or other sampling-based Bayesian methods offer more
flexibility, as they make fewer assumptions about the distribution of the state and can more accurately
capture non-linearities and non-Gaussian behaviors. For this framework, we refer to the comprehensive
study of Särkkä and Svensson (2023)

2.4.4 Challenges

For geophysical applications, the state x represents the geophysical variables on a large spatial grid. It
is hence a signal of high dimension with typically d ∼ 106 or even d ∼ 109. Additionally, the underlying
physical equations are nonlinear. As a consequence, the prior regularization term U(x) is highly
non-convex, and costly to both evaluate and differentiate through, as it involves a computationally
heavy physical simulator. Fore these reasons, efficiently finding a maximum likelihood solution to (2.4.3)
is computationally challenging.

In the control community, the state estimation problem for nonlinear models is widely studied from a
mathematical point of view, with the challenge of designing nonlinear observer (Bernard et al., 2022;
Buisson-Fenet et al., 2023) with theoretical convergence guarantees.

Deep neural networks hold great promise for solving inverse problems (Bai et al., 2020), as they can
help recover the corrupted signal by using the large amount of statistical information acquired on a
training dataset. For the data assimilation problem in meteorology or oceanography, the ground truth
signals x are not available as the geophysical systems are not fully observed. However, a promising
research direction consists in training a deep neural network to learn a prior on high-resolution
simulations, or on reanalysis datasets such as ERA5 (Muñoz-Sabater et al., 2021), like neural weather
models (Ben Bouallègue et al., 2024), and then to use the learned prior on real observations in
a “simulation-to-reality" fashion.

2.5. Summary of contributions

Now that we have introduced a statistical framework and various mathematical problems of interest,
we provide an overview of our contributions to these problems, which are presented in the following
chapters of this thesis.
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2.5.1 Adaptation and multi-environment system identification

Chapter 3 addresses the system identification problem, Problem 1, as described in Section 2.2. We
study the particular setting where observations have been collected under inhomogeneous experimental
conditions. This situation frequently arises with physical systems, where certain physical parameters
may vary from one experiment to another. As a consequence, the assumption of identically distributed
data formulated in (2.2.7) must be challenged, and it is necessary to develop learning models that are
robust to slight changes in the data distribution.

Setting Adopting a supervised learning framework as in (2.2.11), the observations D = {(zi, yi)}i
come from different datasets D1, . . . , DT , each of which has been collected on the same system with
the same underlying physics, but with different physical parameters ϕ1, . . . , ϕT . The aim is to train a
parametric model by taking advantage of all available data, and therefore to design an architecture that
takes accounts for the variability of the physical system. Several approaches have been proposed in the
deep learning community through the prism of meta-learning (Hospedales et al., 2021). The changes
in experimental conditions are modeled as a two-fold parametric model F (z; θ, w), where w models the
experimental variability. Extending the maximum likelihood estimation formulation of Section 2.2,
system identification consists in minimizing the following training loss:

L(θ) =

T∑
t=1

∑
(z,y)∈Dt

(
F (z; θ, wt)− y

)2
. (2.5.1)

Challenge Black-box meta-learning approaches such as the MAML algorithm (Finn et al., 2017),
and its variations applied to physical systems (Yin et al., 2021; Kirchmeyer et al., 2022; Park et al.,
2023), proceed by modeling environment variations as an additive correction in the parameter space
of a neural network f(z; θ), as F (z; θ, w) = f(z; θ + w). Because the parameter space of a neural
network is not interpretable, finding a connection between the learning parameters w and the physical
parameters ϕ is challenging. Additionally, this model poses computational challenges at both training
time and inference time, as the dependence of w as a function of θ may be complex.

Contribution Unlike black-box deep learning approaches that make no assumptions about the data
distribution, we leverage the physical structure to learn the system with a simpler and interpretable
model of the form F (z; θ, w) = w>v(z; θ), where v(z; θ) is a neural network. We show that, by
mimicking the structure of physical equations, this parameterization allows both for efficient learning
and interpretability. We propose applications in parameter identification and adaptive control.

2.5.2 Active identification of linear dynamical systems

In Chapter 4, we study the optimal experimental design problem, Problem 2, as introduced in Section 2.3.
We focus on the specific case of dynamical systems. In the reinforcement learning community, this
problem is also referred to as the active exploration problem (Shyam et al., 2019). The aim is to design
an experimental design exploration policy that drives the system towards highly informative states, so
that the model parameters are estimated as fast as possible. Applications include aeronautics and
robotics, where system parameters need to be identified in real time (Gupta et al., 1976; Spong et al.,
2020).

Setting We focus on fully observed dynamical systems, learned with a linear dynamics model,
as introduced in Example 2.1.3. As seen in Example 2.2.4, the transition function is modeled
as f(z; θ) = θ × z, with z = (x, u) and θ = (A,B). For such a model, we have seen that the trajectory
likelihood is

log p(x0:t|u0:t−1, θ) = − 1

2σ2

t−1∑
s=0

‖θ × zs − xs+1‖2 − t log(
√

2πσ2). (2.5.2)
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In this dynamical setting, the experimental design policy of Algorithm 2.2 runs in real time: the model
is learned online using the ordinary least squares estimator θ̂ of (2.2.20), and the control returned by
the policy ut = Π(z0:t−1|θt−1) is played at the next time step.

Challenge Two challenges arise for exploration in such dynamical systems. First, the interdependence
between the trajectory states precludes explicit computation of the prediction error objective (2.3.1).
Indeed, we see in (2.5.2) that the observations zs are not fixed, as zs+1 is a function of the dynamics and
the past trajectory z0:s. Therefore, Proposition 2.2 does not apply and the linear optimal experimental
design theory introduced in Section 2.3.2 may not be directly used. Second, the experimental design
procedure of Algorithm 2.2 should run online at high frequency in real-life applications. Hence, the
decision-making policy Π : x0:t, u0:t 7→ ut is constrained to a small computational budget, making
nonlinear optimization methods such as gradient-based approaches unlikely to fit. Several active
system identification algorithms for dynamical systems have been recently proposed in the machine
learning community (Wagenmaker et al., 2021; Mania et al., 2020). Although these algorithms are
provided with optimality guarantees and theoretical bounds, their computational cost make them
rather impractical for this online setting.

Contribution Resorting to information theory, we derive the Fisher information matrix and propose a
theoretically grounded experimental design objective in this dynamical setting, in the form of (2.3.8).
Mindful of the real-world constraints of physical systems, we compute a greedy approximation of
the Fisher information and devise an information-maximizing algorithm that runs online with little
computational burden. We compare its sample complexity and its computational cost with more
elaborate gradient methods on simulated physical systems.

2.5.3 Exploration of nonlinear systems

Following on from Chapter 4, Chapter 5 studies Problem 2 for nonlinear models. This chapter aims to
extend our adaptive exploration algorithm from linear dynamics models, where the model is linear in
both the state and the parameter, to arbitrary nonlinear models. While linear dynamics can describe
many systems locally and are computationally inexpensive, the number of systems that they can learn
is limited: complex phenomena such as friction are known to be nonlinear (Marques et al., 2016).
On the contrary, recent advances in deep learning have demonstrated that neural networks provide
excellent approximations of nonlinear functions (Csáji et al., 2001; Robin et al., 2022), and can be
trained efficiently. It is therefore natural to attempt to generalize the experimental design problem
of Section 2.3 to nonlinear models.

Setting The problem is the same as in Chapter 4, generalized to arbitrary parametric models f(z; θ)
for the dynamics. We have seen in Example 2.2.2 that the log-likelihood of a trajectory z0:t is

log p(x0:t|u0:t−1, θ) = − 1

2σ2

t−1∑
s=0

‖f(zs; θ)− xs+1‖2 − t log(
√

2πσ2), (2.5.3)

where f may be as complex as a deep neural network.

Challenge Unlike the linear dynamics setting of Chapter 4, we have seen in Section 2.3.3 that the
Fisher information matrix depends on θ, and cannot be computed in closed form as a function of the
trajectory. Deriving the information gain while maintaining low computational complexity therefore
requires further approximations. Recent works from the statistical learning community have proposed
bounds for the estimation error in this exploration problem (Mania et al., 2020), but with restrictive
assumptions and little practical applicability. In the reinforcement learning community, parameter
uncertainty for nonlinear models is either modeled by ensembling (Shyam et al., 2019) or by optimizing
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an experimental design objective with nonlinear programming (Buisson-Fenet et al., 2020; Schultheis
et al., 2020). These approaches assume extensive computational resources and may be too slow to run
online in embedded systems.

Contribution Building on the work of MacKay (1992), we generalize the optimal experimental design
approach of Chapter 4 to nonlinear exploration by considering the linearized parametric model. We
thus generalize our online policy to nonlinear models, while maintaining a low computational cost.
We compare our policy’s performance with state-of-the art model-based and model-free exploration
algorithms.

2.5.4 Neural data assimilation

Chapter 6 addresses the state estimation problem, Problem 3, as defined in Section 2.4. We propose a
deep learning method to the data assimilation problem.

Setting In geophysics applications such as meteorology, the state is a spatio-temporal signal x = x0:T .
Assuming a parametric transition model f(x; θ) and Gaussian model noise, the prior distribution takes
the form

p(x0:T ) =

T−1∏
t=0

1√
2π|Σ|

exp

(
−1

2
‖f(xt; θ)− xt+1‖2Σ−1

)
. (2.5.4)

A maximum a posteriori state estimate is then computed by solving (2.4.2) numerically.

Challenge The state representing the spatio-temporal physical signal over a fixed time inter-
val x0:T ∈ Rd is of potentially high dimension: in real-world applications, d may be of order 109.
Moreover, the model f typically corresponds to simulating the underlying physical equations (such as
the Navier-Stokes equations), which are costly to compute and lead to a complex posterior distribution.
State-of-the-art data assimilation methods such as 4D-Var (Le Dimet and Talagrand, 1986) proceed by
solving (6.2.1) using gradient-based methods, hence requiring heavy computations of a high-dimensional
state and differentiating through complex physical simulations. Recently, the success of diffusion
models for imaging (Ho et al., 2020) has led to the development of so-called "plug and play" methods,
where the neural network is trained to learn a prior (Laumont et al., 2022). Once trained, the neural
prior can be used to solve a large number of inverse problems. In this line of work, Rozet and Louppe
(2023) proposed a data assimilation method based on a diffusion model. Another type of approach
called “end-to-end” aims to directly train a neural network to minimize the reconstruction error. They
have the benefit of training the network directly on the task of interest, but the versatility of the
trained model with respect to different observational processes is challenging.

Contribution Our aim is to develop an “end-to-end" neural data assimilation method where the
expensive physical model is replaced with a trained neural network. Specifically, our goal is to learn
the y 7→ x̂(y) mapping from data. We train a neural model A(y; θ) with an objective of the form

minimize
θ∈Rn

N∑
i=1

1

2
‖A(y(i); θ)− x(i)‖2, (2.5.5)

where (x(i))i and (y(i))i denote simulation data, and we explore how to model such an assimilation
model to be versatile with respect to arbitrary observation processes H. We study how such an
algorithm may improve the performance of 4D-Var while reducing its computational cost.
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Chapter 3

Interpretable meta-learning
of physical systems

Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging
system identification settings where data come from inhomogeneous experimental conditions. Recently,
meta-learning approaches have made significant progress in system identification within a multi-
task learning scenario, but they rely on black-box neural networks, resulting in high computational
costs and limited interpretability. Leveraging the structure of the learning problem, we argue that
multi-environment generalization can be achieved using a simpler learning model, with an affine
structure with respect to the learning task. Crucially, we prove that this architecture can identify the
physical parameters of the system, enabling interpretable learning. We demonstrate the competitive
generalization performance and the low computational cost of our method by comparing it to state-of-
the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems.
The interpretability of our method is illustrated with original applications to physical-parameter-induced
adaptation and to adaptive control.

Chapter organization This chapter is organized as follows. Section 3.1 presents the multi-environment
learning problem and its challenges. Section 3.2 poses the statistical framework of this problem, along
with examples. Section 3.3 introduces CAMEL, a meta-learning algorithm for the multi-environment
learning problem. Section 3.4 studies the interpretability of CAMEL. Section 3.5 evaluates the
performance of CAMEL with numerical experiments on various physical systems. Section 3.6 compares
our contribution with related works. Section 3.7 summarizes our contributions and discusses its
limitations and perspectives.

This chapter is based on the article Interpretable Meta-Learning of Physical Systems (Blanke and
Lelarge, 2024), published in the Twelfth International Conference on Learning Representations (ICLR
2024).
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3.1. Introduction

Learning physical systems is an essential application of artificial intelligence that can unlock significant
technological and societal progress. Physical systems are inherently complex, making them difficult to
learn Karniadakis et al. (2021). A particularly challenging and common scenario is multi-environment
learning, where observations of a physical system are collected under inhomogeneous experimental
conditions Caruana (1997). In such cases, the scarcity of training data necessitates the development
of robust learning algorithms that can efficiently handle environmental changes and make use of all
available data.

This multi-environment learning problem falls within the framework of multi-task learning, which has
been widely studied in the field of statistics since the 1990s (Caruana, 1997). The aim is to exploit
task diversity to learn a shared representation of the data and thus improve generalization. With the
rise of deep learning, several meta-learning approaches have attempted in recent years to incorporate
multi-task generalization into gradient-based training of deep neural networks. In the seminal paper
by Finn et al. (2017), and several variants that followed (Zintgraf et al., 2019; Raghu et al., 2020),
this is done by integrating an inner gradient loop in the training process. Alternatively, Bertinetto
et al. (2019) proposed adapting the weights using a closed-form solver. As far as physical systems
are concerned, the majority of the proposed methods have focused on specific architectures oriented
towards trajectory prediction (Wang et al., 2022a; Kirchmeyer et al., 2022).

When learning a physical system from data, a critical yet often overlooked challenge is model inter-
pretability (Lipton, 2018; Grojean et al., 2022). Interpreting the learned parameters in terms of the
system’s physical quantities is crucial to making the model more explainable, allowing for scientific
discovery and downstream model-based applications such as control. In a multi-task learning setting,
the diversity in the learning environments should enable the identification of the physical parameters
that vary across the tasks.

The above approaches benefit from the expressiveness of deep learning, but are costly in terms of
computational time, both for learning and for inference. Furthermore, the complexity and the black-
box nature of neural networks hinder the interpretability of the learned parameters, even when the
physical system is linearly parametrized. Recently, Wang et al. (2021) showed theoretically that the
learning capabilities of gradient-based meta-learning algorithms could be matched by the simpler
architecture of multi-task representation learning with hard parameter sharing, where the heads of
a neural network are trained to adapt to multiple tasks (Caruana, 1997; Ruder, 2017). They also
demonstrated empirically that this architecture is competitive against state-of-the-art gradient-based
meta-learning algorithms for few-shot image classification. We propose to use multi-task representation
learning for physical systems, and show how it can bridge the gap between the power of neural networks
and the interpretability of the model, with minimal computational costs.

Contributions In this chapter, we study the problem of multi-environment learning of physical systems.
We model the variability of physical systems with a multi-task representation learning architecture
that is affine in task-specific parameters. By exploiting the structure of the learning problem, we
show how this architecture lends itself to multi-environment generalization, with considerably lower
cost than complex meta-learning methods. Additionally, we show that it enables identification of
physical parameters for linearly parametrized systems, and local identification for arbitrary systems.
Our method’s generalization abilities and computational speed are experimentally validated on various
physical systems and compared with the state of the art. The interpretability of our model is illustrated
by applications to physical parameter-induced adaptation and to adaptive control.
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Figure 3.1. Upkie, a wheeled biped robot, under different experimental conditions. Credit: Stéphane
Caron.

3.2. Learning from multiple physical environments

In this section, we present the problem of multi-task learning as it occurs in the physical sciences, and
we summarize how it can be tackled with deep learning in a meta-learning framework.

3.2.1 The variability of physical systems

In general, a physical system is not fixed from one interaction to the next, as experimental conditions
vary, whether in a controlled or uncontrolled way. From a learning perspective, we assume a meta-
dataset D := ∪Tt=1Dt composed of T datasets, each dataset gathering observations of the physical
system under specific experimental conditions. This setting challenges the assumption of identically
distributed observations that is usually postulated in system identification (Ljung, 1986), hence it
significantly deviates from the traditional regression problem as formulated in Section 2.2 of Chapter 2.
The goal is to learn a predictor from D that is robust to task changes, in the sense that when presented
a new task, it can learn the underlying function from a few samples (Hospedales et al., 2021).

For simplicity, we assume a classical supervised regression setting where Dt := {z(t)
i , y

(t)
i }1≤i≤Nt and

the goal is to learn a z 7→ y predictor, although the approaches presented generalize to other settings
such as trajectory prediction of dynamical systems. Note that in practice the number of tasks T is
typically very limited, owing to the high cost of running physical experiments. We discuss two physical
examples illustrating the need for multi-task learning algorithms, with different degrees of complexity.

Example 3.2.1 [Actuated pendulum] We begin with the simple pendulum, one of physics’ most famous
toy systems, already introduced in Example 2.1.4 of Section 2.1. Denoting its inertia and its weight
by ϕ2 and ϕ2 and the applied torque by τ , the angle q obeys

ϕ1q̈ + ϕ2 sin q = τ. (3.2.1)

In reinforcement learning and control, for example, we may want to learn the action y = τ as a
function of coordinates z = (q, q̇, q̈). In a data-driven framework, the trajectories collected may show
variations in the pendulum parameters: the same equation (3.2.1) holds true, albeit with different
parameters ϕ1 and ϕ2. This observation generalizes to more complex articulated systems, such as
robots (see Figure 3.1), as we will see. Note that while the pendulum has well-understood physics, our
goal is to model more advanced systems such as robots with complex effects (including friction), hence
motivating a statistical approach and the use of deep neural networks.

A more complex, non-analytical example is that of learning the solution to a partial differential equation,
which is rarely known in closed form and varies strongly according to the boundary conditions.
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Figure 3.2. Challenges of modeling non-identically distributed data. Left Samples from a multi-
environment dataset, from two different experimental conditions. Right The physical system at
prediction time, with a few-shot dataset. The prediction on the right is obtained from a parametric
model trained on the collection of all the datasets, without modeling their variability. This results in a
blurry prediction blending the various environments, rather than capturing the changes in the system.

Example 3.2.2 [Electrostatic potential] As we saw in Example 2.1.2 of Chapter 2, the electrostatic
potential x(z) in a space Ω devoid of charges solves Laplace’s equation

∆x = 0 on Ω, x(z) = b(z) on ∂Ω. (3.2.2)

With the general aim of learning an emulator of the equation using a statistical approach, a parametric
model is trained on data y(t)

i = x(z
(t)
i ) collected during different experiments t. In the data collection

process, it may happen that the system slightly varies from one experiment to another. For example,
the geometry of the boundary conditions may be perturbed, leading to changes in the data distribution
parametrized by some physical parameter vector ϕ, as Ω = Ω(ϕ), and b(z) = b(z;ϕ). A robust
data-driven solver should be able to generalize to (at least small) changes of ∂Ω(ϕ) and b(z;ϕ).

The challenges of learning in such a multi-environment setting are illustrated in Figure 3.2, where we
see that modeling the system’s variability is necessary for accurately predicting its behavior under
different experimental conditions.

3.2.2 Overview of multi-environment deep learning

Multi-task statistical learning has a long history, and several approaches to this problem have
been proposed in the statistics community (Caruana, 1997). We will focus on the meta-learning
paradigm (Hospedales et al., 2021), which has recently gained considerable importance and whose
application to neural nets looks promising given the complexity of physical systems. We next describe
the generic structure of meta-learning algorithms for multi-task generalization. The goal is to obtain
a z 7→ y mapping in the form of a two-fold function y ' g(z;w), where w is a tunable task-specific
weight that models the environment variations.

Learning model Given the learning capabilities of neural networks, incorporating multi-task general-
ization into their gradient descent training algorithms is a major challenge. Since the seminal paper
by Finn et al. (2017), several algorithms have been proposed for this purpose, with the common idea of
finding a map adapting the weights of the neural network according to task data. A convenient point
of view is to introduce a two-fold parameterization of a meta-model F (z; θ, w), with a task-agnostic
parameter vector θ ∈ Rn and task-specific weights w (also called learning contexts). For each task t, the
task-specific weight is computed based on some trainable meta-parameters π and the task data currently
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being processed as wt := A(π,Dt), according to an adaptation operation A that is differentiable with
respect to π. The meta-parameters are trained to minimize the meta-loss function aggregated over
the tasks, as we will see below. In this formalism, a meta-learning algorithm is determined by the
meta-model F (z; θ, w) and the adaptation operation A.

We provide examples of recent architectures in Table 3.1. In MAML (Finn et al., 2017), the meta-
parameter π is simply θ and the adaptation rule is computed as a gradient step in the direction of
the task-specific loss improvement, in an inner gradient loop. The task variability is modeled as an
additive correction in the parameter space of a neural network f(z; θ), as F (z; θ, w) = f(z; θ + w).
In CoDA (Kirchmeyer et al., 2022), the structure is the same but the meta-parameter π has a
dimension growing with the number of tasks t and the adaptation operation is computed directly
from the meta-parameters, with task-specific low-dimensional context vectors αt ∈ Rdα and a linear
hypernetwork Θ ∈ Rn×dα . Variants of MAML, CAVIA (Zintgraf et al., 2019) and ANIL (Raghu et al.,
2020), fit into this scheme as well and correspond to the restriction of the adaptation inner gradient
loop to a predetermined set of the network’s weights. This framework also encompasses the CAMEL
algorithm, which we introduce in Section 3.3.

Meta-training The training process is summarized in Algorithm 3.1. For each task t, the meta-
learner computes a task-specific version of the model from the task dataset Dt, with the adapted
weights wt := A(π,Dt). The error on the dataset Dt is measured by the task-specific loss

`(θ, w;Dt) =
∑

(z,y)∈Dt

1

2

(
F (z; θ, w)− y

)2
. (3.2.3)

Parameters π are trained by gradient descent in order to minimize the regularized meta-loss defined as
the aggregation of Lt and a regularization term R(π):

L(π) :=

T∑
t=1

`
(
θ, wt(π);Dt

)
+R(π). (3.2.4)

Algorithm 3.1 Gradient-based meta-training

input meta-model F (z; θ, w), adaptation
rule A, initial meta-parameters π, learning
rate γ, task datasets D1, . . . DT

output learned meta-parameters π̄
while not converged do

for tasks 1 ≤ t ≤ T do
compute θ from π
adapt wt := A(π,Dt)
compute `

(
θ, wt(π);Dt

)
end for
compute L(π), as in (3.2.4)
update π ← π − γ∇L(π)

end while

Table 3.1. Structure of various meta-learning models.
Here f(z; θ) ∈ R and v(z; θ) ∈ Rr denote arbitrary
parametric models, such as neural networks; “order"
stands for differentiation order.

MAML CoDA CAMEL
π θ θ,Θ, {αt} θ, {ωt}

dim(π) n n+n×dα+dα×T n+r×T
dim(w) n r

A(π,Dt) −α∇θLt Θαt ωt
F (x; θ, w) f(z; θ + w) w>v(z; θ)
training 2 1 1order

adaptation 1 1 0order

Prediction-time adaptation Once training is complete, the trained meta-parameters π̄ define a tunable
model g(z;w) := F (z; θ̄, w), where θ̄ is the trained task-agnostic parameter vector. At test time, the
trained meta-model is presented with a dataset DT+1 consisting of few samples (or shots) from a new
task. Using this adaptation data, θ̄ is frozen and the task-specific weight w is tuned (possibly in a
constrained set) by minimizing the prediction error on the adaptation dataset:

wT+1 ∈ argmin
w

`
(
θ̄, w;DT+1

)
. (3.2.5)
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3.3. Context-Affine Multi-Environment Learning

In all the above approaches, this minimization is performed by gradient descent. The resulting adapted
predictor is defined as F (z; θ̄, wT+1). The meta-learning algorithm is then evaluated by the performance
of the adapted predictor on new samples from task T + 1.

Computational cost The inner-loop gradient-based adaptation used in MAML and its variants suffers
from the computational cost of second-order optimization, since Hessian-vector products are computed
in numbers proportional to the number of tasks. Furthermore, the cost of gradient-based adaptation
at test time can also be crucial, especially for real-time applications where the trained model must be
adapted at high frequency.

3.3. Context-Affine Multi-Environment Learning

Physical systems often have a particular structure in the form of mathematical models and equations.
The general idea behind model-based machine learning is to exploit the available structure to increase
learning performance and minimize computational costs (Karniadakis et al., 2021). With this in mind,
we adopt in this section a simpler architecture than those shown above, and show how it lends itself
particularly well to learning physical systems.

Problem structure We note that many equations in physics exhibit an affine task dependence, since
the varying physical parameters often are linear coefficients (as we see in Example 3.2.1, and we
shall further explain in Section 3.4). By incorporating this same structure and hence mimicking
physical equations, the model should be well-suited for learning them and for interpreting the physical
parameters. Following these intuitions, we propose to learn multi-environment physical systems with
affine task-specific context parameters.

Definition 3.1 [ Context-affine multi-task learning] The prediction is modeled as an affine function
of low-dimensional task-specific weights w ∈ Rr with a task-agnostic feature map v(z; θ) ∈ Rr and a
task-agnostic bias c(z; θ) ∈ R:

F (z; θ, w) = c(z; θ) + w>v(z; θ). (3.3.1)

The dimension r of the task weight must be chosen carefully. It must be larger than the estimated
number of physical parameters varying from task to task but smaller than the number of training
tasks, so as to observe the function v projected over a sufficient number of directions. During training,
the task-specific weights are directly trained as meta-parameters along with the shared parameter
vector: π = (θ, ω1 . . . , ωT ) and wt = A(π,Dt) = ωt. The meta-parameters are jointly trained by
gradient descent as in Algorithm 3.1. At test time, the minimization problem of adaptation (3.2.5)
reduces to ordinary least squares.

The architecture introduced in Definition 3.1 is equivalent to multi-task representation learning with
hard parameter sharing (Ruder, 2017) and is proposed as a meta-learning algorithm in (Wang et al.,
2021) We will refer to it in our physical system framework as Context-Affine Multi-Environment
Learning (CAMEL). In this work, we show that CAMEL is particularly relevant for learning physical
systems. Table 3.1 compares CAMEL with the meta-learning algorithms described above.

Computational benefits As the task weights (ωt)
T
t=1 are kept in memory during training instead of

being computed in an inner loop, CAMEL can be trained at minimal computational cost. In particular,
it does not need to compute Hessian-vector products as in MAML, or to propagate gradients through
matrix inversions as in (Bertinetto et al., 2019). The latter operations can be prohibitively costly in
our physical modeling framework, where the number of data points Nt is large (it is typically the
size of a high-resolution sampling grid, or the number of samples in a trajectory). Adaptation at test
time is also computationally inexpensive since ordinary least squares guarantees a unique solution
in closed form, as long as the number of samples exceeds the dimension r of the task weight. For
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real-time applications, the online least-squares formula (Kushner and Yin, 2003) ensures adaptation
with minimal memory and compute requirements, whereas gradient-based adaptation (as in CoDA or
in MAML) can be excessively slow.

Applicability The meta-learning models described in Section 3.2.2 seek to learn multi-task data
from a complex parametric model (typically a neural network), making the structural assumption that
the weights vary slightly around a central value θ in parameter space: F (z; θ, wt) = f(z; θ + δθ(wt)),
where δθ is a function of wt and ‖δθt‖ � ‖θ‖. Extending this reasoning, the model should be close to
its linear approximation:

f(z; θ + δθt) ' f(z; θ) + δθt
>∇f(z; θ), (3.3.2)

where we observe that the output is an affine function of the task-specific component δθt. We
believe that (3.3.2) explains the observation that MAML mainly adapts the last layer of the neural
network (Raghu et al., 2020). In Definition 3.1, v and c are arbitrary parametric models, which can be
as complex as a deep neural network and are trained to learn a representation that is linear in the
task weights. Following (3.3.2), we expect CAMEL’s expressivity to be of the same order as that of
more complex architectures, with c(z; θ), wt and v(z; θ) playing the roles of f(z; θ), δθt and ∇f(z; θ)
respectively. Another key advantage of CAMEL is the interpretability of the model, which we describe
next.

3.4. Interpretability and system identification

The observations of a physical system are often known to depend on certain well-identified physical
quantities that may be of critical importance in the scientific process. When modeling the system
in a data-driven approach, it is desirable for the trained model parameters to be interpretable in
terms of these physical quantities (Karniadakis et al., 2021), thus ensuring controlled and explainable
learning (Linardatos et al., 2021). We here focus on the identification of task-varying physical
parameters, which raises the question of the identifiability of the learned task-specific weights. System
identification and model identifiability are key issues when learning a system (Ljung, 1998). Although
deep neural networks are becoming increasingly popular for modeling physical systems, their complex
structure makes them impractical for parameter identification in general (Nelles, 2001).

Physical context identification In mathematical terms, the observed output y is considered as samples
of an unknown state function x(z;ϕ) of the input and a physical context vector ϕ ∈ Rκ, gathering
the parameters of the system. In our multi-environment setting, the observations from each task
are defined by a vector ϕt as y

(t)
i = x(zi, ϕt), up to some observation noise. At test time, a new

environment corresponds to an unknown underlying physical context ϕT+1. While adaptation consists
in minimizing the prediction error on the data as in (3.2.5), the interpretation goes further and seeks
to identify ϕT+1. This means mapping the learned task-specific weights w to the physical contexts ϕ,
i.e. learning an estimator ϕ̂ : w 7→ ϕ using the training data and the trained model. Assuming that
the physical parameters of the training data {ϕt} are known,

this can be viewed as a regression problem with T samples, where ϕ̂ is trained to predict ϕt from
weights wt learned on the training meta-dataset.

3.4.1 Linearly parametrized systems

We are primarily interested in the case where the physical parameters are known to be linear in the
system equation, as

x(z;ϕ) := µ(z) + ϕ>ν(z), ϕ, ν(z) ∈ Rκ. (3.4.1)
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This class of systems is of crucial importance: although simple, it covers a large number of problems of
interest, as the following examples illustrate. Furthermore, it can apply locally to more general system,
as we shall see later.

Example 3.4.1 [Electric point charges] Point charges are a particular case of Example 3.2.2 with
point boundary conditions, as we saw in Example 2.1.1 of Chapter 2. We assume that κ point
charges (ϕ(1), . . . , ϕ(κ)) := ϕ ∈ Rκ are located at some known positions ζ(1), . . . , ζ(κ) ∈ Ω. The
resulting field can be computed using Coulomb’s law as a function of the position z, and is found to be
proportional to these charges: x(z;ϕ) = ϕ>ν(z), with ν(z) ∝ (1/‖z − ζ(j)‖)j . Although the solution
is known in closed form, this example can illustrate more complex problems where an analytical
solution is out of reach (and hence ν is unknown) but the linear dependence on certain well-identified
parameters is postulated or known.

Example 3.4.2 [Inverse dynamics in robotics] The Euler-Lagrange formulation for the rigid body
dynamics has the form

M(q)q̈ + C(q, q̇)q̇ + γ(q) = τ, (3.4.2)

where q is the generalized coordinate vector, M is the mass matrix, C is the Coriolis force matrix, γ(q)
is the gravity vector and τ is the input (Tedrake, 2022). It can be shown that (3.4.2) is linear with
respect to the system’s dynamic parameters (Nguyen-Tuong and Peters, 2010), and hence takes the
form of (3.4.1) for scalar controls. A simple, yet illustrative system with this structure is the actuated
pendulum (3.2.1), where it is clear that the equation is linear in the inertial parameters ϕ1 and ϕ2.
The inverse dynamics equation can be used for trajectory tracking (Spong et al., 2020), as it predicts u
from a target trajectory {q(s)} (see Appendix 3.B.3).

3.4.2 Locally linear physical contexts

In the absence of prior knowledge about the system under study, the most reasonable structural
assumption for multi-task data is to postulate small variations in the system parameter: ϕ = ϕ0 + δϕ.
The learned function can then be expanded and found to be locally linear in physical contexts:

x(z;ϕ) ' x(z;ϕ0) + δϕ>∇x(z;ϕ0), (3.4.3)

where the gradient is taken with respect to ϕ. Equation (3.4.3) has the form (3.4.1) with µ(z) = x(z;ϕ0)
and ν(z) = ∇x(z;ϕ0).

Example 3.4.3 [Linearization of boundary perturbations] For a general boundary value problem such
as (3.2.2), we may assume that the boundary conditions ∂Ω(ϕ) and b(z, ϕ) vary smoothly according
to parameters ϕ (such as angles or displacements). If these variations are small and the problem is
sufficiently regular, the resulting solution x(z;ϕ) can be reasonably approximated by (3.4.3).

3.4.3 Parameter identification with CAMEL

We now study the problem of system identification under the assumption of parameter linearity (3.4.1)
using the CAMEL metamodel (3.3.1). We study the identifiability of the model and therefore investigate
the vanishing training loss limit, with c = µ = 0 for simplicity, yielding

ωt
>v(z

(t)
i ) = ϕt

>ν(z
(t)
i ) for all 1 ≤ t ≤ T, 1 ≤ i ≤ Nt. (3.4.4)

Identifiability Posed as it is, we can easily see that the physical parameters ϕt are not directly
identifiable. Indeed, for any P ∈ GLr(R), the weights ω and the feature vector v produce the same
data as the weights ω′ := P>ω and the feature map v′ = P−1v, since ω>v = ω>PP−1v. This problem
is related to that of identification in matrix factorization (see for example Fu et al. (2018)). Now that
we have recognized this symmetry of the problem, we can ask whether it characterizes the solutions
found by CAMEL. The following result provides a positive answer.
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Proposition 3.1 [Model identifiability] Assume that the training points are uniform across tasks: z(t)
i = zi,

and Nt = N for all 1 ≤ t ≤ T and 1 ≤ i ≤ N , with κ ≤ r < N, T . Assume that both sets {ν(zi)}
and {ϕt} span Rκ. In the limit of a vanishing training loss L(π) = 0, the trained meta-parameters re-
cover the parameters of the system up to a linear transform: there exist P,Q ∈ Rκ×r such that ϕt = Pωt
for all training task t and ν(zi) = Qv(zi) for all 1 ≤ i ≤ N . Additionally, QP> = Ir.

A proof is provided in Appendix 3.A, along with the case c 6= µ. Proposition 3.1 shows that CAMEL
learns a meaningful representation of the system’s features instead of overfitting the examples from the
training tasks. Remarkably, the relationship between the learned weights and the system parameters is
linear and can be estimated using ordinary least squares

ϕ̂(ω) = P̂ω, P̂ = argmin
P∈Rκ×r

1

2

T∑
t=1

‖Pωt − ϕt‖22. (3.4.5)

Although the relationship between the model and the system, in general, is likely to be complex,
especially when deep neural networks are used, the structure of our model and the linear physical
contexts enable the derivation of the problem symmetries and the computation of an estimator of the
physical parameters. For black-box meta-learning architectures, exhibiting the symmetries in model
parameters and computing an identification map seems out of reach, as the number of available tasks T
can be very limited in practice (Pourzanjani et al., 2017).

Zero-shot adaptation Looking at the problem from another angle, Proposition 3.1 also shows that ω
can be estimated linearly as a function of ϕ, at least when r = κ (which ensures that P is nonsingular).
Computing an estimator of ω as a function of ϕ with the inverse regression to (3.4.5) enables a
zero-shot (or physical parameter-induced) adaptation scenario: when an estimate of the physical
parameters of the new environment is known a priori, a value for the model weights can be inferred.

3.5. Experimenting on physical systems

The architecture that we have presented is expected to adapt efficiently to the prediction of new
environments, and identify (locally or globally) their physical parameters, as shown in Section 3.4. In this
section, we validate these statements experimentally on various physical systems: Sections 3.5.1 and 3.5.2
deal with systems with linear parameters (as in (3.4.1)), on which we evaluate the interpretability of
the algorithms. We then examine a non-analytical, general system in Section 3.5.3. We compare the
performances of CAMEL and its zero-shot adaptation version ϕ-CAMEL introduced in Section 3.4.3
with state-of-the-art meta-learning algorithms. Our code and demonstration material are available
at https://github.com/MB-29/CAMEL.

Baselines We have implemented the MAML algorithm of Finn et al. (2017), and its ANIL vari-
ant (Raghu et al., 2020), which is computationally lighter and more suitable for learning linearly
parametrized systems (according to observation (3.3.2)). We have also adapted the `1-CoDA architec-
ture of Kirchmeyer et al. (2022) for supervised learning (originally designed for time series prediction).
In all our experiments, the different meta-models share the same underlying neural network architecture,
with the last layer of size r & κ. Additional details can be found in Appendix 3.B. The linear regressor
computed for CAMEL in (3.4.5) is computed after training for all architectures with their trained
weights wt, and is available at test time for identification.
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3.5. Experimenting on physical systems

3.5.1 Interpretable learning of an electric point charge system

100 101 102

T

10−2

10−1

100

identification error

CAMELANIL CoDA

Figure 3.3. Average rel-
ative error for the point
charge identification.

As a first illustration of multi-environment learning, we are interested in
a data-driven approach to electrostatics, where the experimenter has no
knowledge of the theoretical laws (Maxwell’s equations, as in Example 3.2.2)
of the system under study. The electrostatic potential is measured at various
points in space, under different experimental conditions. The observations
collected are then used to train a meta-learning model to predict the
electrostatic field from new experiments, based on very limited data. We
start with the toy system described in Example 3.4.1, which provides a
qualitative illustration of the behavior of various learning algorithms: κ = 3
point charges placed in the plane at fixed locations. This experiment is
repeated with varying charges ϕ ∈ R3.

Results For this system with linear physical parameters, CAMEL outperforms other baselines and
can predict the electrostatic field with few shots, as shown in Figure 3.7 and Table 3.2 (5-shot
adaptation). Figure 3.3 shows the identification error over 30 random test environments with standard
deviations, as a function of the number of training tasks. Thanks to the sample complexity of linear
regression, CAMEL accurately identifies system charges, achieving less than 1% relative error with 10
training tasks.

3.5.2 Multi-task reinforcement learning and online system identification

Another scientific field in which our theoretical framework can be applied is multi-task reinforce-
ment learning, in which a control policy is learned using data from multiple environments of one
system (Vithayathil Varghese and Mahmoud, 2020). We saw in Example 3.4.2 that robot joints
obey the inverse dynamics equation, which turns out to be linear in the robot’s inertial parameters.
Consequently, our architecture lends itself well to the statistical learning of this equation from multiple
environment data, as well as to the identification of the dynamic parameters. We may then exploit the
learned model of the dynamics to perform adaptive inverse dynamics control (see Appendix 3.B.4) of
robots with unknown parameters, and learn the parameters simultaneously.

Systems We experiment with systems of increasing complexity, starting with 2D simulated sys-
tems: cartpole and acrobot. To make them more realistic, we add friction in their dynamics. The
analytical equation (3.4.2) is hence inaccurate, which motivates the use of a data-driven learning
method. We then experiment on the simulated 6-degree-of-freedom robot Upkie (Figure 3.4), for
which (3.4.2) is unknown and the wheel torque is learned from the ground position and the joint angles.

Figure 3.4.
Upkie.

Experimental setup Learning algorithms are trained on trajectories (a more challenging
setting than uniformly spaced data) obtained from multiple system environments. At
test time, a new environment is instantiated and the model is adapted from a trajectory
of few observations. The resulting adapted model is then used to predict control values
for the rest of the trajectory. For the carptole and the robot arm, the predicted values
are used to track a reference trajectory using inverse dynamics control. For Upkie, we
could not directly use the predicted controls for actuation, but we compare the open-loop
predictions with the executed control law. The target motions are swing-up trajectories
for the cartpole and the arm, and a 0.5m displacement for Upkie. Since Upkie is a very
unstable system, it is controlled in a 200Hz model predictive control loop (Rawlings,
2000).
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Figure 3.5. Tracking of a reference trajectory using the learned inverse dynamics controller.
Left 50-shot adaptation. Center and right The model and the controller are adapted online.

Online adaptive control We also investigate a challenging time-varying dynamics setting where the
inertial parameters of the system change abruptly at a given time. This scenario is very common in
real life and requires the development of control algorithms robust to these changes and fast enough
to be adaptive (Åström and Wittenmark, 2013). In our case, we double the mass of the cart in the
cartpole system, and we quadruple the mass of Upkie’s torso. The learning models adapt their task
weights online and adjust their control prediction. In an application to parameter identification, we
also compute the estimated values of the varying parameter over time.

Results The 100-shot adaptation error of the control values is reported in Table 3.2. The trajectories
obtained with inverse dynamics control adapted from 50 shots are plotted in Figure 3.5 for CAMEL
and for the best-performing baseline, ANIL, along with the analytical solution. Only CAMEL adapts
well enough to track the target trajectory. The analytic solution underestimates the control as it does
not account for friction, resulting in inaccurate tracking. In the adaptive control setting, the variation
in the mass of the cart leads to a deviation from the target trajectory but CAMEL is able to adapt
quickly to the new environment and identifies the new mass, unlike ANIL. Experimentation on Upkie
shows that the computational time of adaptation can be crucial, as we found that the gradient-based
adaptation of ANIL and CoDA was too slow to run in the 200Hz model predictive control loop. On
the other hand, CAMEL’s gradient-free adaptation and interpretability allow it to track and identify
changes in system dynamics, and to correctly predict the stabilizing control law.

3.5.3 Beyond context-linear systems
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Figure 3.6. Adaptation and relative identification
error for the ε-capacitor, with increasing ε.

In order to evaluate our method on general systems
with no known parametric structure, we consider
the following non-analytical electrostatic problem
of the form shown in Example 3.2.2. The field is
created by a capacitor formed by two electrodes
that are not exactly parallel. The variability of
the different experiments stems from the misalign-
ment δϕ ∈ R2, in angle and position, of the up-
per electrode. We apply the same methodology
as described in Section 3.5.1. The whole multi-
environment learning experiment is repeated sev-
eral times with varying magnitudes of misalign-
ment, by replacing δϕ with ε δϕ for different val-
ues of ε ∈ [0, 1]. This parameterization allows
us to move gradually from local perturbations
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Figure 3.7. Few-shot adaptation on two out-of-domain environments of the point charge system in
a dipolar setting (left) and the capacitor (right). The adaptation points are represented by the ×
symbols. The vector fields are derived from the learned potential fields using automatic differentiation.

when ε� 1 (as in Example 3.4.3) to arbitrary variations in the environment.

Results The 40-shot adaptation error for the ε-capacitor is reported in Table 3.2, with perturbation
of full magnitude ε = 1 and with ε = 0.1. We also show the 5-shot adaptation of CAMEL and the
best performing baseline, CoDA, for ε = 0.2 in Figure 3.7. When the system parameters are fully
nonlinear, CAMEL and the baselines perform similarly, but CAMEL is much faster. In the second
case, CAMEL outperforms them by an order of magnitude and accurately predicts the electrostatic field,
whereas CoDA’s exhibits lower precision. Predictions and average identification error (with standard
deviations) are plotted as a function of ε in Figure 3.6. For small ε, the system parameter perturbation
is well identified, enabling a zero-shot adaptation. Remarkably, Figure 3.7 suggests that the zero-shot
model ϕ-CAMEL performs as well as its few-shot counterpart in this regime, demonstrating the
effectiveness of interpretability.

Table 3.2. Average adaptation mean squared error (left) and computational time (right).
System Charges Capacitor ε-Capacitor Cartpole Arm Upkie
MAML 1.6e-1 N/A N/A 1.8e0 8.1e-1 1.5e-2
ANIL 9.2e-4 3.6e-2 1.1e-3 2.5e-2 7.5e-1 1.9e-2
CoDA 8.2e-2 2.6e-2 1.0e-3 8.1e-1 9.3e-1 2.1e-2
R2-D2 1.2e-4 3.1e-4 4.2e-4 8.5e-3 3.5e-1 2.3e-2
CAMEL 1.0e-4 2.6e-2 1.9e-4 3.1e-3 2.4e-1 8.2e-3

Training Adaptation
30 10
10 3
2 8
20 1
1 1

3.6. Related work

Multi-task meta-learning Meta-learning algorithms for multi-task generalization have gained popular-
ity (Hospedales et al., 2021), with the MAML algorithm of Finn et al. (2017) playing a fundamental role
in this area. Based on the same principle, the variants ANIL (Raghu et al., 2020) and CAVIA (Zintgraf
et al., 2019) have been proposed to mitigate training costs and reduce overfitting. Interpretability is ad-
dressed in the latter work, using a large number of training tasks. In a different line of work, Bertinetto
et al. (2019) proposed the R2-D2 architecture where the heads of the network are adapted using the
closed-form formula of Ridge regression. The similarities between multi-task representation learning
and gradient-based learning are studied in (Wang et al., 2021) from a theoretical point of view, in the
limit of a large number of tasks. Unlike our method, the approaches above rely on the assumption
that the number of training tasks is large (in few-shot image classification for example, where it can be
in the millions (Wang et al., 2021; Hospedales et al., 2021)) and the number of data points per task is
limited. For physical systems, in contrast, since experimenting is often costly, the number of tasks
available at training is typically very limited, but the number of points for each task can be large. The
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assumption of limited allows the task-specific weightsto be stored in the meta-parameter vector instead
of being computed at each training step.

Meta-learning physical systems Meta-learning has been applied to multi-environment data for physical
systems, with a focus on dynamical systems, where the target function is the flow of a differential
equation. Recent algorithms include LEADS (Yin et al., 2021), in which the task dependence is
additive in the output space and CoDA (Kirchmeyer et al., 2022), where parameter identification
is addressed briefly, but under strong assumptions of input linearity. Wang et al. (2022b) propose
physical-context-based learning, but context supervision is required for training. From a broader point
of view, the interpretability of the statistical model can be imposed by adding physical constraints to
the loss function (Raissi et al., 2019).

Multi-task reinforcement learning Meta-learning has given rise to a number of fruitful new approaches
in the field of reinforcement learning. Sodhani et al. (2021) and Clavera et al. (2019) propose multi-task
deep learning algorithms, but no structure is assumed on the dynamics and the learned weights can be
interpreted only statistically, in the parameter space of a large black-box neural network. Multi-task
learning of inverse dynamics with varying inertial parameters is studied in (Williams et al., 2008)
using Gaussian processes, but parameter identification is not addressed.

3.7. Conclusion

We introduced CAMEL, a simple multi-task learning algorithm designed for multi-environment learning
of physical systems. For general and complex physical systems, we demonstrated that our method
performs as well as the state-of-the-art, at a much lower computational cost. Moreover, when the
learned system exhibits a linear structure in its physical parameters, our architecture is particularly
effective, and enables the identification of these parameters with little supervision, independently
of training. The effectiveness of our approach for parameter identification is demonstrated in our
experiments.

We proposed a particular application in the field of robotics where our data-driven method enables
concurrent adaptive control and system identification. We believe that enforcing more physical structure
in the meta-model, using for example Lagrangian neural networks (Lutter et al., 2019), can improve
its sample efficiency and extend its applicability to more complex robots.

While we focused on classical regression tasks, our framework can be generalized to predict dynamical
systems by combining it with a differentiable solver (Chen et al., 2018). Another interesting avenue for
future research is the use of active learning, to make the most at out the available training resource
and enhance the efficiency of multi-task learning for static and dynamic systems (Wang et al., 2023;
Blanke and Lelarge, 2023).
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Chapter 4

Online active identification
of linear dynamical systems

This work addresses the problem of exploration in an unknown environment. For multi-input multi-
output linear time-invariant dynamical systems, we use an optimal experimental design framework
and introduce an online greedy policy where the control maximizes the information of the next step.
In a setting with a limited number of observations, our algorithm has low complexity and shows
experimentally competitive performances compared to more elaborate gradient-based methods.

Chapter organization This chapter is organized as follows. Section 4.1 presents the active system
identification problem and its challenges. In Section 4.2, we pose the mathematical framework of this
sequential decision-making problem. Section 4.3 introduces our online greedy information-maximizing
policy. Section 4.4 evaluates the performance of this policy with numerical experiments. In Section 4.5,
we compare our contribution with related works. In Section 4.6, we summarize our contributions, and
we discuss its limitations and perspectives.

This chapter is based on the article Online greedy identification of linear dynamical systems (Blanke
and Lelarge, 2022), published in the Proceedings of the IEEE 61st Conference on Decision and
Control (CDC 2022).
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4.1. Introduction

System identification is a primary field in control theory (Ljung, 1998) and has applications in many
fields such as econometrics, robotics, aeronautics, mechanical engineering or reinforcement learning
(Natke, 1992; Goodwin and Payne, 1977; Gupta et al., 1976; Moerland et al., 2021). The task consists
in estimating the parameters of an unknown system by sampling data from it. This work is concerned
with the identification of dynamical systems, which find applications in aeronautics (Gupta et al.,
1976) or in robotics (Spong et al., 2020) for instance. As a general rule, collecting data from a physical
system comes at a high cost. In aeronautics or robotics, for example, carrying out an experiment costs
equipment, personnel, time and the risk of damage. Consequently, it is always of interest to be able
to estimate these parameters using as little data as possible. This observation raises the following
question: if the experimenter can choose his inputs when interacting with the system, how can he
choose the inputs that will produce the most informative data for parameter estimation? The problem
thus defined is called optimal experimental design, or active system identification, and it is the issue
that we will be tackling in this work.

In this chapter, we will be focusing on a simple, yet rich class of models: multivariate linear dynamical
models. These models can describe simple systems, where the dynamics are known to be approximately
linear. However, they can also describe more complex systems. Indeed, nonlinear dynamics can always
be linearized around an equilibrium. For example, the angular response of an aviation system around a
reference angle can be well described by a linear system. A linear model can even describe a nonlinear
system globally, when implemented in a high-frequency updated control loop: the model’s error is
compensated for by feedback from the control loop. In the control community, these systems are
referred to as multi-input multi-output (MIMO) linear time-invariant (LTI) dynamical systems.

The active identification of dynamical systems has been the subject of much work in the control
community since the 1970s, in the framework of optimal experimental design (Fedorov et al., 1972;
Pukelsheim, 2006). Most of this work focuses on a frequency-domain approach, which assumes that
the system has reached a quasi-stationary regime (Gevers et al., 2011). We argue that the validity of
this assumption is questionable in many applications, where time scales are too short for a stationary
regime to be considered. In robotics, for example, the robot’s environment can change rapidly, and the
corresponding linear model must be able to be estimated just as quickly. Recently, the active dynamical
system identification problem has received significant interest from the machine learning community
for its connections with reinforcement learning (Wagenmaker and Jamieson, 2020; Wagenmaker et al.,
2021; Mania et al., 2020). These works propose a theoretical approach to active learning, where the
emphasis is on the computation of estimatoin bounds. The resulting algorithms have theoretical
guarantees, but are only asymptotically valid in time. Moreover, the computational cost of these
algorithms can be significant. For these reasons, we explore the active identification problem with a
particular eye on these practical constraints, and propose an algorithm that is efficient in a regime
where both the number of observations and computational resources are small.

Contributions In this work, we explore a setting for linear system identification with hard limitations
on the number of interactions with the real system and on the computing resources used for planning
and estimation. To the best of our knowledge, finite-time system identification guarantees are only
available in the long time limit which makes the hypothesis of linear time-invariant dynamics quite
unlikely. Using a framework based on optimal experimental design, we propose a greedy online
algorithm requiring minimal computing resources. The resulting policy gives a control that maximizes
the amount of information collected at the next step. We show empirically that for short interactions
with the system, this simple approach can actually outperform more sophisticated gradient-based
methods. We study the computational complexity of our algorithms and compare their performance
against each other and against an oracle that we design, both on average and on real-life dynamical
systems.
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4.2. The active system identification problem

In this section, we provide a mathematical formulation of the active system identification, following up
on the framework introduced in Chapter 2. Let A ∈ Rd×d and B ∈ Rd×k be two matrices; we consider
the following discrete-time dynamics model:

x0 = 0,

xt+1 = Axt +But + ηt, 0 ≤ t ≤ T − 1
(4.2.1)

where xt ∈ Rd is the state, ηt ∼ N (0, σ2Id) is a normally distributed isotropic noise with known
variance σ2 and the control variables ut ∈ Rk are chosen by the controller with the following power
constraint:

1

T

T−1∑
t=0

‖ut‖2 ≤ β2. (4.2.2)

Assumptions and notations Since the scope of this work is exploration in state space, we assume
perfect state observations yt = xt. The parameters of the model are (AB) := θ ∈ Rd×(d+k). We
let n = d× (d+ k) be the number of scalar parameters. We assume that the system can be described
by a true parameter value (A?B?) := θ? generating the observations according to (4.2.1), according to
the independent Gaussian noise assumption. This parameter value is unknown initially and is to be
identified. We denote by zt := (xt, ut) the state-action pair and by z0:t := (x0:t, u0:t−1) a trajectory in
state-action space. At each time step, an estimator θ̂ : z0:t 7→ θ̂(z0:t) ∈ Rn yields an estimate θt = θ̂(z0:t)
of the parameters from the past trajectory. We define a policy Π : z0:t → ut as a mapping from the past
trajectory to future input. The set of policies meeting the power constraint (4.2.2) is noted Pβ . The
choice of inputs depends on the current estimate of the system’s dynamics, and hence on the estimate
of the system parameters, which we will emphasize by writing by Π(z0:t) = Π(z0:t|θt). Note that it
may happen that B? is known advance, in which case only A? is to be estimated and θ = A, n = d× d.

Objective Our goal is to find a policy Π ∈ Pβ under which the resulting trajectory z0:T gives the
best possible estimation θT := θ̂(z0:T ) for θ?. As we saw in Proposition 2.3 of Chapter 2, the learning
performance for linear models is accurately measured by the parameter error, which we here denote by

ε(θ) := ‖θ − θ?‖2. (4.2.3)

The goal of active system identification is to find a policy Π minimizing the expected error, which may
be formulated as

minimize
Π∈Pβ

E[ε(θN )|Π], (4.2.4)

where the expectation is taken with respect to the data-generating distribution, that is the dynam-
ics (4.2.1) of the true parameters θ?, under policy Π. The sought policy should not only optimize this
mathematical objective, but also meet the practical constraints mentioned in Section 4.1.

4.2.1 Sequential identification

Since objective (4.2.4) depends on the true, unknown system parameters, it cannot be directly computed
by the controller and minimized with respect to Π to find an optimal policy. We therefore need to
find a way of quantifying the informativeness of the controller’s inputs, in order to deduce an effective
exploration policy. Once a policy is found, the system’s parameters are sequentially estimated, and
the successive iterates θt are used to improve the dynamical model for planning the next inputs
with Π(z0:t|θt). This scheme is summarized in Algorithm 4.1, which may be seen as an adaptation
of the sequential experimental design algorithm of Algorithm 2.2 to the setting of linear dynamical
systems.
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Algorithm 4.1 Sequential system identification

input learning model f , time horizon T , policy Π ∈ Pβ , estimator θ̂
output parameter estimate θT
for 0 ≤ t ≤ T − 1 do

choose ut = Πt(x0:t, u0:t−1|θt)
observe xt+1 = A?xt +B?ut + ηt
update θt+1 = θ̂(x0:t+1, u0:t)

end for

Example 4.2.1 [Random policy] A naive strategy for system identification consists in playing random
inputs with maximal energy at each time step: Π(z0:t) = ut ∼ N

(
0, β

2

k Ik
)
for all t.

Example 4.2.2 [Task-optimal pure exploration] In a theoretical approach to active system identifica-
tion, Wagenmaker et al. (2021) derive a cost function that provably approximates (4.2.4) in the long
time limit T → +∞ at an optimal rate. Their policy selects inputs minimizing this cost, over planning
intervals of exponentially growing length ti = 2i ×H for some initial time horizon H. Therefore, the
policy updates Π(.|θt) is constant with respect to θt over these exponentially long planning intervals.

Example 4.2.3 [Oracle] An oracle is a controller that is assumed to choose its policy with the knowledge
of the true parameter θ?. It can hence optimize objective (4.2.4) in open loop with respect to the
inputs u0:T−1. By definition, the inputs played by the oracle are the optimal inputs for our problem of
mean squared error system identification.

4.2.2 Ordinary least-squares estimation

Before considering the decision-making problem of finding an informative policy, we turn to the
learning problem of parameter estimation. Given a trajectory z0:t, a natural estimator for the
matrix parameters θ? is the maximum likelihood estimator, which as we shall see coincides with the
ordinary least squares estimator. In the remainder of this chapter, we will denote p(z0:t|θ) rather
than p(x0:t|u0:t−1, θ).

The data-generating distribution given the parameter θ can be computed using the probability chain
rule with the dynamics (4.2.1):

p(z0:t|θ) =
1

(
√

2πσ2)t
exp

[
− 1

2σ2

t−1∑
s=0

‖Axs +Bus − xs+1‖22

]
. (4.2.5)

The log-likelihood of the observation is

log p(z0:t|θ) = − 1

2σ2

t−1∑
s=0

‖Axs +Bus − xs+1‖22 − t log(
√

2πσ2) (4.2.6)

As we saw in Chapter 2, we can compute the maximum likelihood estimator in closed form. The
following result summarizes the formulae and adapts them in an online setting.

Proposition 4.1 [Maximum likelihood esimtator] Given a trajectory z0:t, the maximum likelihood
estimator for θ is obtained as

θ̂(z0:t) =
(
G−1
t

t−1∑
s=0

zsx
>
s+1

)
> ∈ R(d+k)×d, (4.2.7)
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where

Gt :=

t−1∑
s=0

zszs
> ∈ R(d+k)×(d+k) (4.2.8)

is the Gram matrix of the trajectory. The Gram matrix and the maximum likelihood estimator satisfy
the following recursions (Kushner and Yin, 2003):

Gt+1 = Gt + zt+1z
>
t+1

θ>t+1 = G−1
t+1(Gtθ

>
t + ztx

>
t+1).

(4.2.9)

Remark 4.1 [System controllability] We assume that the Gram matrix is invertible. This is related
to the controllability of our dynamical system (4.2.1) and can be quantified in terms of the rank of
a controllability matrix that may be computed with A? and B?. We refer to (Kirk, 1970) for more
details and we will assume controllability of the system in the remained of this work.

In the remainder of this work, we will use the maximum likelihood estimator for system identifica-
tion (4.2.7). Owing to the linearity of the model in its parameters, we have been able to calculate this
estimator explicitly as a function of the trajectory. In the absence of dynamics, for a static linear
model, we have seen in Proposition 2.2 of Chapter 2 that this estimator follows a Gaussian distribution,
whose moments can be easily calculated as a function of the regression variables. Here, we will see
that the dynamics of the system make this calculation far more complex.

Proposition 4.2 The gap between the likelihood estimator (4.2.7) and θ? is

θ̂(z0:t)− θ? =
(
G−1
t

t−1∑
s=0

zsη
>
s

)
>. (4.2.10)

Because the zs are random and mutually correlated, we see from (4.2.10) that the distribution of θ̂
around θ? is potentially far from being Gaussian, and that we cannot easily guarantee that this estimator
is unbiased. Unlike the case of linear regression where the zs are fixed, the stochasticity of z0:t and
their correlation with the past noise ηs make the computation of the first-order and second-order
moments nontrivial. As a consequence, we cannot quantify the estimator uncertainty directly from its
second-order moments, as we did in Section 2.2.2, and we will hence resort to the Fisher information
matrix and optimal experimental design theory.

4.3. Online D-optimal identification

In this section, we use information theory to quantify the quality of a trajectory for system identification.
We derive an optimization problem consisting in maximizing information, and propose an approximate
solution to this problem to obtain an online exploration policy.

4.3.1 Optimal experimental design

In this section, we apply the theory of optimal experimental design (Fedorov et al., 1972; Steinberg and
Hunter, 1984) to quantify the informativeness of a trajectory. In our framework, the system parameters
are estimated by maximum likelihood (4.2.7) from a full trajectory z0:T of length T . Among all the
possible trajectories, we want to measure which ones make this estimation the most accurate. As we
have seen in Section 4.2.2, computing the parameter covariance matrix is out of reach because of the
nontrivial correlations between the trajectory and the noise. Therefore, we leverage information theory
and we compute the the Fisher information matrix, the definition of which is recalled next in the
specific context of dynamical system identification.
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Table 4.1. Alphabetical optimal design criteria.

Criterion Φ(I) Φ(λ1, . . . , λn)

A-optimality −TrI−1 −
(
1/λ1 + · · ·+ 1/λn

)
D-optimality log det I log λ1 + . . . log λn

E-optimality minλ(I) λ1

Definition 4.1 [Fisher information matrix] The observed Fisher information matrix of a trajectory z0:T

at a parameter value θ is defined as

I(z0:T ; θ) := − ∂2

∂θ2
log p(z0:T |θ) ∈ Rn×n. (4.3.1)

Recall that this matrix as defined is a random variable. The (expected) Fisher information matrix at
parameter θ and a policy Π is defined as the expected value of I under θ and Π:

Ī(θ,Π) := E [I(z0:T ; θ)|Π; θ] (4.3.2)

The Fisher information matrix measures the curvature of the likelihood function around the maximum
likelihood estimator. The larger the curvature, the sharper the maximum of the likelihood function,
and therefore the smaller the uncertainty at this maximum. Hence, the information brought by z0:T is
measured by the size of the Fisher information matrix.

Proposition 4.3 [Observed Fisher information] The observed Fisher information matrix of our model is

I(z0:T ; θ) =
1

σ2
diag(GT , . . . , GT ), (4.3.3)

the number of blocks being d.

Remarkably, the observed Fisher information does not explicitly depend on the parameter θ, but only
on the input and the observations z0:T . As in the case of classical linear regression (see Section 2.3.2),
this is due to the linearity of the model, leading to a quadratic log-likelihood in the parameter. However,
unlike classical linear regression, the expected information Ī(θ,Π) still implicitly depends on θ, the
trajectory is not fixed, but generated from the dynamical model (4.2.1).

This matrix being positive, its size may be measured by several scalar functions. In optimal experimental
design theory, these functions are referred to as optimality criteria, as we saw in Section 2.3.3
of Chapter 2. We next recall their definition.

Definition 4.2 [Optimality criteria] The size of the information matrix is measured by some crite-
rion Φ : S+

n (R)→ R+, which is a functional of I, or of its positive eigenvalues λ1, . . . , λn ≥ 0. The
quantity Φ(Ī) is called information gain; it represents the amount of information brought by the
experiment and should be maximized with respect to the problem decision variables. Some usual
criteria are presented in Table 4.1. The optimal design criteria are required to have properties such
as homogeneity, monotonicity and concavity in the sense of the Loewner ordering, which can be
interpreted in terms of information theory: monotonicity means that a larger information matrix
brings a greater amount of information, concavity means that information cannot be increased by
interpolation between experiments. We refer to the work of Pukelsheim (2006) for more details.

The information-theoretic formalism introduced above allow us to formulate a maximal information
objective defined as the information gain of the Fisher information matrix, as we defined in (2.3.7).
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Gathering this objective with the problem’s dynamical constraints, we obtain the following stochastic
optimal control problem:

maximize
(zt)

Φ
(
E
[ T−1∑
t=0

ztzt
>
])

subject to xt+1 = A?xt +B?ut + ηt 0 ≤ t ≤ T − 1,

‖ut‖2 ≤ β2,

(4.3.4)

where we note that the dynamical constraint are stochastic and unknown, as they depend on the
system dynamics.

4.3.2 One-step-ahead objective

The optimal control objecitve (4.3.4) describes how the system should be excited for the parameter
estimation to be maximally accurate. Although theoretically sound, it cannot be solved directly, as the
dynamic constraints are unknown. While these constraints can be sequentially approximated by the
current estimate of the dynamics, the accuracy of an erroneous model diverges in the long term (i.e.
for long planning horizons) due to the accumulation of errors. Moreover, the numerical resolution
of (4.3.4) is challenging due to the non-convexity of the objective function.

In the work of Wagenmaker et al. (2021), the system identification policy optimizes an objective that
is closely related to (4.3.4) with the A-optimal criterion. To make the optimization problem tractable,
a stationary regime is assumed as the inputs are restricted to periodic signals and are optimized in the
frequency domain over an exponentially long planning horizons. On the contrary, we are interested in
a scenario where computations must be fast enough for the policy to run in real time, and must be able
to adapt quickly to each new observation. To achieve this, we will resort to a greedy approximation
of (4.3.4).

Greedy approximation Note that, for each t, the Gram matrix can be split into two terms representing
the past trajectory and the future trajectory respectively:

GT =

t−1∑
s=0

zszs
> +

T−1∑
s=t

zszs
>, (4.3.5)

where the first sum is fixed by the past observations, and the second sum is a random variable depending
on the next inputs. We argue that long-term estimates of the states are likely to be inaccurate, and
that problem (4.3.4) is too complex to be optimized at high frequency anyway. Therefore, we propose
an approximation that favors computational simplicity and adaptability over extensiveness, and we
replace the information matrix by its truncation at the next time step in the information gain:

Φ(GT ) ' Φ(Gt + zt+1z
>
t+1). (4.3.6)

Using this approximation, we can then choose each input ut at time tby maximizing a one-step-ahead
optimization problem in Rk, by computing and maximizing the greedy approximation (4.3.6) of the
information gain. More precisely, our policy computes ut at time t by solving the following optimization
problem

maximize
u∈Rk

Φ
(
Gt + zz>

)
subject to z = (Atxt +Btu, 0), ‖u‖2 ≤ β2.

(4.3.7)

The optimization objective of problem (4.3.7) is defined in terms of Gt, xt and θt, so we may express
the solution as the output of a policy ut = Π(z0:t|θt).
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Remark 4.2 With this greedy policy, the energy constraint imposed for one input ensures that the
global power constraint (4.2.2) is met. Furthermore, this policy does not require the knowledge of the
time horizon T in advance.

We will see in the next section that problem (4.3.7) can be solved accurately and at a cheap cost
for the D-optimality criterion. Moreover, our policy has the advantage of being updated each time
a new observation is collected, thus ensuring that all the available information is used for planning.
This way, the bias affecting planning due to the estimation error about the parameters is minimized.
When planning is performed over larger time sequences, this bias could impair the identification, as
the controller could spend much time exploring directions given by the wrong dynamics.

Algorithm 4.2 Greedy system identification

inputs initial guess θ0, power β2

output final estimate θT
for 0 ≤ t ≤ T − 1 do

ut ∈ argmax
‖u‖22=β2

Φ
(
Mt + z(u)z(u)

>)
play ut, observe xt+1

Gt+1 = Gt + ztzt
>

θ>t+1 = G−1
t+1

(
Gtθ

>
t + ztx

>
t+1

)
end for

4.3.3 Solving the one-step optimal design problem

Adopting D-optimality as an informativeness measure, we show how the one-step-ahead input design
problem that we proposed in Section 4.3.2 can be solved efficiently.

Proposition 4.4 For the D-optimality crtierion, there exists a postive definite symmetric matrixQ ∈ Rk×k
and b ∈ Rk such that the problem (4.3.7) is equivalent to

maximize
u∈Rk

u>Qu− 2b>u

subject to ‖u‖22 ≤ β2.
(4.3.8)

We now characterize the minimizers of problem (4.3.8). Since Q is positive definite, the quadratic
form increases with the value of ‖u‖, hence any maximizer lies on the sphere of radius β. We may
thus equivalently consider the equality constrained problem

maximize
u∈Rk

u>Qu− 2b>u

subject to ‖u‖22 = β2.
(4.3.9)

Proposition 4.5 Note {αi} the eigenvalues of Q, and ui and bi the coordinates of u∗ and b in a
corresponding orthonormal basis. Then a solution u∗ of (4.3.9) satisfies the following equations for
some nonzero scalar µ:

ui = bi/(αi + µ) and
∑
i

bi
2

(αi + µ)2
= β2. (4.3.10)

Proof. By the Lagrange multiplier theorem there exists a nonzero scalar µ such that Qu∗ − b = −µu∗,
where µ can be scaled such that Q+µIk is nonsingular. Inverting the optimal condition and expanding
the equality constraint gives the two stated conditions.
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Problem (4.3.8) can hence be solved at the cost of a scalar root-finding and an eigenvalue decomposition.
In (Hager, 2001), bounds are provided so as to initialize the root-finding search efficiently. Our greedy
active system identification algorithm is summarized in Algorithm 4.2, from which we can see that it
is designed to run online.

4.4. Performance study

We run experiments to validate the performance of our exploration algorithm and compare it to
gradient-based experimental design algorithms. Our code is available online at https://github.com/
MB-29/greedy-identification.

4.4.1 Complexity analysis

Definition 4.3 [Performance] The performance of policy Π is measured by the parameter error ε(θt)
averaged over the experiments on the true system. We study the performance of our algorithms as
a function of the number of observations T and C the computational cost. We also introduce the
computational rate c = C/T .

As a baseline, we introduce a gradient-based exploration algorithm that optimizes (4.3.4) using
stochastic gradient descent, with Φ the A-optimality functional, with a batch size of b = 100 and {ti} =
{0, 10, T/2, T}.

Algorithm 4.2 and the gradient-based identification algorithms have linear time complexity. We see
in the example of static linear regression (see Proposition 2.2) that the squared error should scale
like 1/T , which is verified experimentally in the dynamical setting. Given the previous observations,
we postulate that the performance of our algorithms takes the form

ε(C, T ) = α(c)/T. (4.4.1)

We build an experimental diagram where we plot the average estimation error for θ? = A? as a function
of the two types of resource T and C for the gradient algorithm. Increasing C allows for more gradient
steps. We run trials with random matrices A? of size d = 4, with B = Id. We set β = 1, σ = 10−2,
T ∈ [60, 220]. The obtained performances are compared with those of the greedy algorithm, which has
a fixed, small computational rate c. Our diagrams are plotted on Fig. 4.1.

Our diagrams show that the greedy algorithm is preferable in a phase of low computational rate: C < c× T ,
as suggested by (4.4.1). The phase separation corresponds to a relatively high number of gradient steps.
Indeed, the iso-performance along this line are almost vertical, meaning that the gradient descent has
almost converged. Furthermore, the maximum performance gain of the gradient algorithm relatively
to the greedy algorithm is of 10%.

4.4.2 Average estimation error

We now test the performances of our algorithms on random matrices, with the same settings as in
the previous experiment. For each matrix A?, we also compute an oracle optimal control optimiz-
ing (4.2.4) by stochastic gradient descent, with a batch size of b = 100, and run a random input
baseline (see Example 4.2.1), and the TOPLE algorithm of Wagenmaker et al. (2021).

Both the gradient algorithm and the greedy algorithm closely approach the oracle. The former performs
slightly better than the latter on average. However, the computational cost of the gradient algorithm
is far larger, as Table 4.2 shows. Indeed, the number of gradient steps to reach convergence in this
setting is found to be of order 100.
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Figure 4.1. Experimental (T,C) diagram. Left Performance of the gradient algorithm, with varying T
and C (varying number of gradient steps). Right Relative performance of the gradient algorithm with
respect to the greedy algorithm: positive means that greedy performs better.

Table 4.2. Average computational rate for the different algorithms.

Random TOPLE Gradient Greedy

c 1 20 50 2.36

4.4.3 Identification of an aircraft system

We now study a more realistic setting from the field of aeronautics: we apply system identification
to an aircraft system. We use the numerical values issued in a report from the NASA (Gupta et al.,
1976). The lateral motion of a Lockheed Jet star is described by the slideslip and roll angles and the
roll and yaw rates. The control variables are the aileron and rudder angles (δa, δr) := u. The linear
dynamics for an aircraft flying at 573.7 meters/sec at 6.096 meters are given by the following matrix,
obtained after discretization and normalization of the continuous-time system (Gupta et al., 1976):

A? =


.955 −.0113 0 −.0284

0 1 .0568 0
−.25 0 −.963 .00496
.168 0 −.00476 −.993

 , B? = 0.1×


0 0.0116
0 0

1.62 .789
0 −.87

 , (4.4.2)

and σ = 1, β ' 4 deg.
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Figure 4.2. Identification error for random A? averaged over 1000 samples.
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Table 4.3. Frobenius error for A? in the lateral system of the aircraft, T = 150. Our oracle algorithm
reaches an error of 8.0× 10−2. The computational time is expressed in an arbitrary unit.

Random TOPLE Gradient Greedy

Error 1.1× 10−1 8.6× 10−2 8.3× 10−2 8.2× 10−2

Time 1 55.7 25 1.13

We apply our algorithms to this LTI system. Our results are summarized in Table 4.3.

As we can see, the greedy algorithm outperforms the gradient-based algorithms, both in performance
and in computational cost. This could be explained by the fact that the signal-to-noise ratio in this
system is high, leading to high planning uncertainty. It is hence more effective to plan one-step-ahead
than to do planning over large epochs. We obtain similar results for the longitudinal system of a C-8
Buffalo aircraft (Gupta et al., 1976).

4.5. Related work

System identification has long been studied in the control community, and several works have been
dedicated to LTI systems. Optimal experimental design approaches have been applied to single-input
single-output (SISO) systems (Mehra, 1974; Keviczky, 1975; Goodwin and Payne, 1977) or MIMO
systems in the frequency domain or with randomized time-domain inputs (Mehra, 1976). More
recently, system identification received considerable attention in the machine learning community, with
the aim of obtaining finite-time bounds on the parameter estimation error (Simchowitz et al., 2018;
Sarkar and Rakhlin, 2019; Tsiamis and Pappas, 2019; Jedra and Proutiere, 2020). The question of
designing optimal inputs is tackled in (Wagenmaker and Jamieson, 2020; Wagenmaker et al., 2021).
The authors derive an asymptotically optimal algorithm by computing the control in the frequency
domain to maximize an optimal design objective, with theoretical estimation rate guarantees. Unlike
our online policy, the proposed input design algorithm plans over exponentially large epochs, which is
computationally prohibitive for real-time applications.

4.6. Conclusion

In this work, we explored a setting for optimal experimental design with hard constraints on the
number of interactions with the real system and on the computing resources used for planning and
estimation. We introduced a greedy online algorithm requiring minimal computing resources and
showed empirically that for small values of interactions with the system, it can actually outperform
more sophisticated gradient-based methods.

Our framework is simple and contains strong assumptions, the aim being to study specifically the
problem of system identification and design of experiments. In a more realistic framework, several
of these assumptions need to be reviewed. Firstly, dynamical systems are rarely fully observed:
we typically only have access to state estimates, potentially sparsely sampled in time. Likelihood
calculations would therefore have to be adapted, and state values would have to be replaced by their
estimates (Bar-Shalom, 1972). Secondly, in real systems, there are more mathematical constraints
on both input and state. In robotics, for example, these constraints ensure the robot’s equilibrium
or safety (Tedrake, 2022). For a more operational description, these additional constraints should be
included in optimization problems. However, the main conclusion of our work remains: an efficient
exploration policy can be obtained by considerably simplifying a complex informativity criterion, which
is in particular a non-convex function of states. This is of key importance in robotics, where model
predictive control programs run at high frequencies, and can therefore support limited computations.
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4.6. Conclusion

However, convex programs such as quadratic programs are solved much faster than nonlinear programs
thanks to advanced optimization tools (Bambade et al., 2023).

Finally, we may wonder whether our exploration policy may be generalized to nonlinear dynamical
systems. We study this matter in Chapter 5.
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Chapter 5

Adaptive exploration of
nonlinear dynamical systems

Model-based reinforcement learning is a powerful tool, but collecting data to fit an accurate model of
the system can be costly. Exploring an unknown environment in a sample-efficient manner is hence
of great importance. However, the complexity of dynamics and the computational limitations of real
systems make this task challenging. In this chapter, we introduce FLEX, an exploration algorithm for
nonlinear dynamics based on optimal experimental design. Our policy maximizes the information of the
next step and results in an adaptive exploration algorithm, compatible with generic parametric learning
models and requiring minimal resources. We test our method on a number of nonlinear environments
covering different settings, including time-varying dynamics. Keeping in mind that exploration is
intended to serve an exploitation objective, we also test our algorithm on downstream model-based
classical control tasks and compare it to other state-of-the-art model-based and model-free approaches.
The performance achieved by FLEX is competitive, and its computational cost is low.

Chapter organization This chapter is organized as follows. In Section 5.1, we provide the context and
motivations for studying the nonlinear exploration problem. We introduce the underlying mathematical
formalism in Section 5.2. In Section 5.3, we study an information-theoretic criterion for linearly
parameterized models. In Section 5.4, we introduce FLEX, our exploration algorithm that adaptively
maximizes this objective online. Section 5.5 extends our approach to generic, nonlinear models. We
validate our method experimentally in Section 5.6. Section 5.7 compares our contribution with related
works. Section 5.8 summarizes our contributions and discusses its limitations and perspectives.

This chapter is based on the article FLEX: an Adaptive Exploration Algorithm for Nonlinear Sys-
tems (Blanke and Lelarge, 2023), published in the Proceedings of the 40th International Conference on
Machine Learning (ICML 2023).
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5.1. Introduction

5.1. Introduction

Control theory and model-based reinforcement learning have had a range of achievements in various
fields including aeronautics, robotics and energy systems (Kirk, 1970; Sutton and Barto, 2018). For the
agent to find an effective control policy, the mathematical model of the environment must faithfully
capture the dynamics of the system and thus must be fit with data. However, collecting observations
can be expensive: consider for example an aircraft system, for which running experiments costs a lot
of energy and time (Gupta et al., 1976). In this regard, active exploration (or system identification)
aims to excite the system in order to collect informative data and learn the system globally in a
sample-efficient manner (Yang et al., 2021), independent of any control task. Once this task agnostic
exploration phase is completed, the learned model can be exploited to solve multiple downstream tasks.
In computer science and machine learning, exploration is also at the core of various online learning
problems such as the multi-armed bandit problem (Soare et al., 2014) and tree exploration (Cosson
and Massoulié, 2023), where the goal is to learn the environment as efficiently as possible.

For actuated systems such as robots, dynamics may be complex and generally take the form of a
nonlinear function of the state. An example would be air friction, which is essential to consider for
an accurate control law, and yet difficult to model from physical principles (Faessler et al., 2018;
De Simone et al., 2015). While exploration in linear systems is well understood (Goodwin and
Payne, 1977), efficiently learning nonlinear dynamics is far more challenging. For realistic applications,
this is compounded by the hard limitations of memory and computational resources of embedded
systems (Tassa et al., 2012). Furthermore, the dynamics or the agent’s model of it may vary over
time, and the exploration policy must adapt as the data stream is collected. Therefore, it is critical
that the algorithm works adaptively, with limited memory storage and that it runs fast enough to be
implementable in a real system, while being flexible enough to learn complex dynamics with potentially
sophisticated models.

Different approaches have been proposed recently for exploring nonlinear environments, and have
proceeded by maximizing an information gain (or uncertainty) on the parameters for specific classes
of learning models. An exact computation can be derived for models with linear parameteriza-
tions (Schultheis et al., 2020), which are however of limited expressivity. Uncertainty can also be
computed with Gaussian processes (Buisson-Fenet et al., 2020) or approximated using ensembles of
neural networks (Shyam et al., 2019; Sekar et al., 2020) but these approaches suffer from a quadratic
memory complexity and an important computational cost respectively, making them unlikely to be
implementable in real systems. In all the above approaches, the inputs are planned episodically
by solving a non-convex optimization problem where the nonlinear dynamics are simulated over a
potentially large time horizon. Planning then relies on nonlinear solvers, which may be too slow to run
in real time (Kleff et al., 2021). Furthermore, planning over large time horizons renders the algorithm
unable to adapt to new observations as they are collected. As a result, the agent may spend a long
time trusting a wrong model and exploring uninformative states. In Chapter 4, we have focused on
deriving a fast and adaptive exploration policy for a linear dynamics model. However, maintaining
such guarantees while exploring substantially more complex systems with a nonlinear model remains a
significant challenge and an open area of research.

Contributions This chapter examines the problem of active exploration of nonlinear environments,
with great importance attached to the constraints imposed by real systems. Based on information
theory and optimal experimental design, we define an exploration objective that is valid for generic
parametric learning models, encompassing linear models and neural networks. We derive an online
approximation of this objective and introduce FLEX, a fast and adaptive exploration algorithm. The
sample-efficiency and the adaptivity of our method are demonstrated with experiments on various
nonlinear systems including a time-varying environment and the performance of FLEX is compared to
several baselines. We further evaluate our exploration method on downstream exploitation tasks and
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5.2. Exploring a nonlinear environment
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Figure 5.1. Illustration of active exploration for the dynamics of the pendulum. At each time step, an
action is chosen (left). The decision is taken by using the past trajectory (middle) to learn a model f
of the dynamics (right) and hence a prediction of the next states.

compare FLEX to model-based and model-free exploration approaches.

5.2. Exploring a nonlinear environment

In nonlinear dynamical systems, the state x ∈ Rd and the input u ∈ Rk are governed by an equation
of the form

dx

dt
= f?(x, u), (5.2.1)

where f? is a nonlinear function modeling the dynamics. This function is typically unknown or partially
unknown, and our objective is to learn it from data, with as few samples as possible. Our system is
modeled as discrete states of the dynamics (5.2.1) with Gaussian model error:

xt+1 = xt + dtf(xt, ut; θ) + ηt, 0 ≤ t ≤ T − 1, (5.2.2)

where xt ∈ Rd is the state vector, ηt ∼ N (0, σ2Id) is a normally distributed isotropic noise with known
variance σ2, dt is a known time step, f(x, y; θ) is our learning model with parameter vector θ ∈ Rn, T
is the number of observations, and the control variables ut ∈ Rk are chosen by the agent with the
constraint ‖ut‖2 ≤ β. Since the scope of this work is exploration in state space, we assume perfect
state observations yt := xt, as in Chapter 4. We assume that f is a differentiable function, and we
write indifferently f(x, u; θ) or f(z; θ) where z = (x u) ∈ Rd+k is the state-action pair. Note that our
problem could be formulated in the framework of continuous Markov decision processes (Sutton and
Barto, 2018), but we find (5.2.2) more suitable for our approach.

Sequential learning The dynamics function f? is learned from past observations with a generic
parametric model f(z, θ). At each time t, the observed trajectory yields an estimate θt = θ̂(x0:t+1, u0:t)

following an estimator θ̂, such as the maximum likelihood estimator introduced in Chapter 2. At the
end of the exploration, the agent returns a final value θT . Although this learning problem is rich and
of an independent interest, we will adopt simple, bounded-memory, online learning rules and focus in
this work on the following decision-making process.

Sequential decision-making As we saw in Chapters 2 and 4, the agent’s decision takes the form of a
policy Π : (x0:t, u0:t−1|θt) 7→ ut, mapping the past trajectory to the future input, knowing the current
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5.2. Exploring a nonlinear environment

Algorithm 5.1 active exploration

input learning model f , time horizon T , time step dt, policy Π ∈ Pβ , estimator θ̂
output parameter estimate θT
for 0 ≤ t ≤ T − 1 do

choose ut = Π(x0:t, u0:t−1|θt)
observe xt+1 = xt + dtf?(xt, ut)

update θt+1 = θ̂(x0:t+1, u0:t+1)
end for

parameter θt. We denote by Pβ the set of policies satisfying the constraint of amplitude β. The
sequential decision-making process is summarized in Algorithm 5.1 and illustrated in Figure 5.1. The
goal of active exploration is to choose inputs that make the trajectory as informative as possible for
the estimation of f? with f , as stated below.

The problem For an arbitrary learning model of the dynamics f provided with an estimator θ̂ and
for a fixed number of observations T , the goal is to find an exploration policy Π for which the learned
model is as close to f? as possible at the end of exploration. Formally, we adapt the definition the
estimation error of parameter θ, introduced in Section 2.2 of Chapter 2:

ε(θ) = E
[
‖f(z, θ)− f?(z)‖2

]
, (5.2.3)

with z follows the data distribution . We look for a policy yielding the best estimate of f? at time T :

minimize
Π∈Pβ

E[ε(θT )|Π], (5.2.4)

where the expectation is taken over the stochastic dynamics (5.2.1) and possibly the randomness
induced by the policy.

Practical considerations In addition to the sample efficiency objective (5.2.4), we attach great
importance to the three following practical points that emerge from the observations of Section 5.1.
Adaptivity : as opposed to episodic planning for which Π(.|θ) remains constant with respect to θ
throughout long time intervals, we want our policy to accommodate to new observations at each time
step. Computational efficiency : evaluating the policy Π should require limited computational resources.
Flexibility : our policy should be valid for a broad class of models f , as we will see with the following
examples.

Example 5.2.1 [Damped pendulum] The angle q of a pendulum driven by a torque u satisfies the
following nonlinear differential equation:

q̈ + αq̇ + ω2
0 sin q = bu. (5.2.5)

This second-order system can be described by the bidimensional state variable x = (q, q̇) ∈ R2 and the
nonlinear map f?(q, q̇, u) = (q̇,−αq̇ − ω2

0 sin q + bu).

Example 5.2.2 [Nonlinear friction] Using the same notations, the dynamics of a mass subject
to a control force and friction is given (in the case of one-dimensional system for simplicity)
by f?(q, q̇, u) = (q̇, friction(q, q̇) + bu)>. The friction force is notoriously difficult to model. One
possibility would be the nonlinear function friction(q, q̇) = −α|q̇|q (Zhang et al., 2014).

The choice of model is crucial and depends on prior knowledge about the system. In Example 5.2.1, if
the system is known down to its scalar parameters, learning the dynamics reduces to linear regression.
In the opposite case where little or nothing is known about the structure, as in Example 5.2.2, it
would be desirable to fit more sophisticated parametric models. For instance, the recent successes of

81



5.3. Information-theoretic view of exploration

neural networks and their ability to express complex functions and to be trained online make them a
promising option for our exploration task (Goodfellow et al., 2016).

Importantly, the exploration policy should depend on the learned model and drive the system to
regions with high uncertainty. In contrast, random exploration fails to explore nonlinear systems
globally: typically, friction forces pull the system toward a fixed point, while learning the environment
requires large amplitude trajectories and hence temporal coherence in the excitation.

5.3. Information-theoretic view of exploration

Given a model of the dynamics, how do we choose inputs that efficiently navigate in phase space
towards informative states? This choice should be guided by some measure of the information that
the trajectory provides about our learning model. In this section, we turn to information theory and
study the simplest form of models: linear models provide us not only with a natural learning rule but
also with an information-theoretic measure of exploration. We then leverage this criterion to define an
optimization objective.

5.3.1 Linear models

An important class of models is the class of functions with an affine dependence on the parameters.
In the remainder of this work, we use the word “linear” for an affine dependence. Note that the
term “linear” refers to the parameter dependence of a model, but the dependence in the state-action
pair z is still assumed to be nonlinear in general.

Definition 5.1 [Linear model] The most general form for a linear dependence of f in its parameters is

f(z, θ) = V (z)× θ + c(z), (5.3.1)

where the feature matrix V (z) ∈ Rd×n and c(z) ∈ Rd are independent of θ. We denote
by v(j) ∈ Rn, 1 ≤ j ≤ d the rows of V , and we define Vt := V (zt).

The class of linear models is critically important for several reasons. First, the dynamics can very often
be formulated as an affine function of some well-defined scalar parameters, hence allowing for efficient
estimation by ordinary least squares (Tedrake, 2022). Besides, a natural mathematical exploration
objective from optimal experimental design theory can be derived for linear models (see Section 5.3.2).
Finally, the computations allowed for linear models can be generalized to nonlinear models, as we will
see in Section 5.5.

Example 5.3.1 [Learning the pendulum] When the pendulum of Example 5.2.1 is known up to the
parameters θ = (ω2

0 , α, b)
> then the dynamics can be learned with a linear model as defined in (5.3.1)

with n = 3 by defining

V (z) =

(
0 0 0

− sinφ −φ̇ u

)
, c(z) = (φ̇, 0)>. (5.3.2)

The real dynamics function is f?(z) = V (z)× θ? + c(z) with θ? the true parameters.

An important case of linear models is when the parameters are separated in a matrix form according
to row-wise dependence, as follows.

Definition 5.2 [Matrix parameterization] We call a matrix parameterization a model of the form

f(z,Θ) = Θ× φ(z), (5.3.3)

where φ : Rd+k → Rr is a feature map and Θ ∈ Rd×r is a parameter matrix. The structure (5.3.1) is
recovered by defining θ as the vectorization of Θ of size n = d× r, and the feature matrix as the block
matrix V = diag(φ>, . . . , φ>) ∈ Rd×n.
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5.3. Information-theoretic view of exploration

Example 5.3.2 [Linear dynamics] Consider the case of a linear time-invariant model for the dynamics,
as we saw in Chapter 4: f(z,Θ) = Θ× z, with the parameters Θ = (AB) ∈ Rd×(d+k). This falls into
the category a matrix parameterization (5.3.3) with φ(z) = z and r = d+ k.

Example 5.3.3 [Random Fourier Features] (Schultheis et al., 2020) propose to model nonlinear dynamics
with Random Fourier Features, which take the form (5.3.3), with φ(z) a random feature.

5.3.2 Optimal experimental design

In this section, we recall the notions of information theory introduced in Section 2.3 of Chapter 2 that
will allow us to formulate exploration as a mathematical problem. Let y be an observation whose
distribution p(y|z, θ) depends on a parameter θ ∈ Rn and a decision variable, or design, denoted z,
that is chosen following a policy Π. Experimental design theory provides a quantitative answer to the
question: how informative are the observations y for estimating θ when using design z? We answered
this question in Section 2.3.3 of Chapter 2, and we recall here how the information may be defined as
a scalar functions of the Fisher information matrix.

Definition 5.3 [Fisher information and information gain] The observed Fisher information matrix (Gel-
man et al., 2004) of observation y at some parameter value θ is

I(z, y; θ) = −∂
2 log p(y|z, θ)

∂θ2
∈ Rn×n. (5.3.4)

The D-optimal information gain for policy Π is defined as

g(Π|θ) = log det
(
E
[
I(z, y; θ)

∣∣Π, θ]) . (5.3.5)

This information gain quantifies the information about θ provided by the observations with policy Π,
and it may be interpreted as the volume of the confidence ellipsoid for the parameter vector θ. Several
other functionals can be used instead of log det, leading to other optimality criteria. The D-optimality
criterion benefits from a property of scale invariance (Pukelsheim, 2006) and is suitable for our online
setting because it provides a simple rank-one update formula, as we will see in Section 5.4. A D-optimal
policy is a maximizer of the information gain:

maximize
Π

g(Π|θ). (5.3.6)

From a Bayesian perspective, D-optimality minimizes the entropy of the expected posterior on θ, or
equivalently the mutual information between the current prior and the expected posterior (Chaloner
and Verdinelli, 1995).

5.3.3 Optimally informative inputs for exploration

In this section, we apply the optimal experimental design framework to our dynamical setting, where
the Gaussian noise assumption and the linear structure of the model allow for exact computations.
The observations are the state-action trajectory z0:t = (x0:t, u0:t−1) and the policy Π chooses the
inputs u0:t−1.

Definition 5.4 [Gram matrix] An important quantity is the Gram matrix of the features, defined as

Gt =

t−1∑
s=0

Vs
>Vs ∈ Rn×n. (5.3.7)
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5.4. Adaptive D-optimal exploration with FLEX

Proposition 5.1 Assume a linear model (5.3.1) for the data-generating distribution of the trajectory,
with c = 0 for simplicity. Then, the maximum likelihood estimate of θ is

θ̂(z0:t) = G−1
t

t−1∑
s=0

Vs
>xs+1 (5.3.8)

and the observed Fisher information matrix is

I(z0;t; θ) =
1

σ2
Gt. (5.3.9)

Note that, as we saw in Chapter 4 for linear dynamics, I does not depend explicitly on θ but only on
the observations for linear models.

It follows from (5.3.6) and Proposition 5.1 that, in our setting, D-optimal inputs solve the following
optimal control problem:

maximize
(zt)

log det
( T−1∑
t=0

Vt
>Vt

)
subject to xt+1 = xt + dtf(xt, ut), 0 ≤ t ≤ T − 1,

‖ut‖2 ≤ β2,

(5.3.10)

where we neglect the noise in the dynamics for simplicity, and recall that Vt = V (zt).

Remark 5.1 [Optimal design for matrix models] For models of the form (5.3.3), one can readily show
that an equivalent objective is obtained by defining Vt := φ(zt)

> instead of Vt = V (zt).

5.3.4 Sequential learning

Linear models can be learned online with the recursive least squares formula for the estimator (5.3.8).
Assuming for simplicity d = 1, c = 0 and denoting vt = V (zt)

> ∈ Rn, online learning takes the form

θt+1 = θt −G−1
t vt(vt

>θt − xt+1) (5.3.11a)
= θt − Γt∇`t(θt). (5.3.11b)

with the squared error loss `t(θ) = 1
2 × ‖vt>θ − xt+1‖22 and the matrix learning rate Γt := G−1

t .
Equation (5.3.11b) makes it transparent that recursive least squares is an online gradient descent step.
The memory cost of learning is O(n2) for the storage of Gt and θt. For d > 1, there is one update for
each row, hence d updates per time step t.

5.4. Adaptive D-optimal exploration with FLEX

We adopt D-optimality (5.3.10) as an objective for our exploration policy. However, this problem
is non-convex and providing a numerical solution is computationally challenging. Furthermore, the
dynamics constraint is unknown and can only be approximated with the current knowledge of the
dynamics, which is improved at each time step. Although previous approaches have opted for an
episodic non-convex optimization with large time horizons (Schultheis et al., 2020; Wagenmaker et al.,
2021), it is desirable to quickly update the choice of inputs at the same frequency as they are collected.
In this section, we introduce FLEX (Algorithm 5.2), an adaptive D-optimal exploration algorithm
with low computational complexity. In this section, we use the notations of linear models as defined
in Section 5.3. We will show how this formalism extends to arbitrary, nonlinear models in Section 5.5.

84



5.4. Adaptive D-optimal exploration with FLEX

5.4.1 One-step-ahead information gain

Since we seek minimal complexity and adaptivity, we choose to devote the computational effort at
time t to the choice of the next input ut only. We want to define an informativeness measure Ft for
input ut and solve a sequence of problems of the form

ut ∈ argmax
u∈Rk

Ft(u)

subject to ‖u‖2 ≤ β2.
(5.4.1)

As stated before, we also attach great importance to the computational time of solving (5.4.1).

The function Ft should quantify the information brought by ut, for which we derived a mathematical
expression in our information-theoretic considerations of Section 5.3. Therefore, we want the problem
sequence (5.4.1) to be an approximation of the problem (5.3.10). As in Chapter 4, we propose a greedy
approximation, which can be derived as follows. At time t, the past trajectory z0:t is known and the
choice of ut immediately determines the next state xt+1. We define Ft as the predicted information
gain truncated at t+ 1.

Definition 5.5 [Predicted information gain] Letting x(u) := xt + dtf(xt, u, θt) be the one-step-ahead
state prediction and z(u) := (x(u), 0), we define

Ft(u) = U(z(u)) (5.4.2)

with
U(z) = log det(Gt + V (z)

>
V (z)). (5.4.3)

When V is of rank one, a simpler formula can be derived.

Lemma 5.1 [Determinant Lemma] By choosing a row v := v(i) for 1 ≤ i ≤ d ∈ Rn of the feature
matrix V and approximating V >V ' vv>, the expression for the information gain can be simplified
as follows:

U(z) = log detGt + v>(z)G−1
t v(z). (5.4.4)

We adopt the rank-one approximation of Lemma 5.1 in the remainder of this work. Note that the
index i of row v can be either drawn randomly or chosen using prior knowledge: the i-th row of V is
informative if the i-th component of the model is sensitive with respect to the parameters. One could
also design a numerical criterion for this choice.

5.4.2 Computing D-optimal inputs

For linear systems, we have shown in Chapter 4 that a greedy D-optimal policy yields good exploration
performance. However for nonlinear systems, the nonlinearity of v(z) makes the maximization
problem (5.4.1) challenging. To obtain a simpler optimization problem, we linearize the model with
respect to the state. Intuitively, since we are planning between t and t+ dt, the corresponding change
in the state is small so it is reasonable to use a linear approximation to the mapping z 7→ v(z).

Proposition 5.2 Linearizing our objective (5.4.2) to first order in dt yields the following approximation
to the optimization problem (5.4.1):

maximize
u∈Rm

u>Qu− 2b>u

subject to ‖u‖22 ≤ β2,
(5.4.5)

where Q and b are computed in terms of the Gram matrix G := Gt ∈ Rn×n and the vector v and the
derivatives D := ∂v/∂x ∈ Rn×d, and B := dt ∂f/∂u ∈ Rd×m evaluated at z̄ := z(u = 0), as follows

Q = B>D>G−1DB ∈ Rk×k,
b = −B>D>G−1v ∈ Rk.

(5.4.6)
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5.5. From linear models to nonlinear models

Algorithm 5.2 Fast Linearized EXploration (FLEX)

input model f , horizon T , time step dt, first estimate θ0

output parameter estimate θT
for 0 ≤ t ≤ T − 1 do

compute Qt, bt from (5.4.6)
choose ut ∈ argmax

u>u≤β2

u>Qtu− 2b>t u (Proposition 5.2)

observe xt+1 = xt + dt f?(xt, ut) + ηt
compute `t(θ) = 1

2‖f(xt, ut, θ)− (xt+1 − xt)/dt‖22
update θt+1 = θt − Γt∇`t(θt) as in (5.5.6)

end for

Remark 5.2 [Linear dynamics] When the dynamics are linear as in Example 5.3.2, it follows from
Example 5.3.2 and Remark 5.1 that v(z) = z, hence ∂v/∂x = In,d and Gt =

∑t−1
s=0 zszs

> ∈ Rd×d. Then,
applying Proposition 5.2 yields Q = B>GtB and b = B>Gt(Id + dtA)xt and we find exactly the greedy
optimal design algorithm introduced in Chapter 4.

Our exploration policy is summarized in Algorithm 5.2. Note that since it optimizes a greedy objective
at each time step, it is adaptive by nature and it does not require the knowledge of the time horizon T .
The following result shows that solving (5.4.5) can be achieved at low cost, ensuring that our policy is
computationally efficient.

Proposition 5.3 Problem (5.4.5) can be solved numerically at the cost of a scalar root-finding and
a m×m matrix eigenvalue decomposition.

5.5. From linear models to nonlinear models

For the cases when no prior information is available about the structure of the dynamics (see Ex-
ample 5.2.2), it is desirable to generalize the policy derived in Section 5.4 to more complex models
that are not linear in the parameters. In this section, we extend Algorithm 5.2 to generic, nonlinear
parametric models. We assume that f is doubly differentiable with respect to z and θ.

5.5.1 Linearized model

The developments of Section 5.4 are based on the linear dependence of the model on the parameters.
For nonlinear models, a natural idea is to make a linear expansion of the model: assuming that the
parameter vector is close to a convergence value θ?, we can linearize f to first order in θ − θ?:

f(z, θ) ' f(z, θ?) +
∂f

∂θ
(z, θ?)× (θ − θ?). (5.5.1)

In the limiting regime where this linear approximation would hold, f would be a linear model with
features

V (z) =
∂f

∂θ
(z, θ?) ∈ Rd×n. (5.5.2)

Considering this analogy, we can generalize D-optimal experimental design (MacKay, 1992), and we
aim to extend the results of Section 5.4 to nonlinear models.

5.5.2 Online exploration with nonlinear models

In our dynamical framework, we expect the approximation (5.5.1) to be increasingly accurate as more
observations are collected, hence motivating the generalization of the exploration strategy developed
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Figure 5.2. Evaluation error over time for different environments as a function of time t averaged
over 100 trials.

in Section 5.4 to nonlinear models. The features of the linearized model (5.5.1) are unknown because
the Jacobian (5.5.2) depends on the unknown parameter θ? in general. However, we can approximate θ?
by the current estimate θt at each time step along the trajectory. By defining

Vt :=
∂f

∂θ
(zt, θt), (5.5.3)

we extend the notion of the Gram matrix in Definition 5.4 as well as the optimal control problem (5.3.10)
to nonlinear models. Note that since Vt depends only on (zt, θt), the Gram matrix can still be computed
online along the trajectory. Similarly, we extend the approach developed in Section 5.4 by defining

v(z) := ∇θf (i)(z, θt) (5.5.4)

with 1 ≤ i ≤ d chosen as in Lemma 5.1. With these quantities defined, Algorithm 5.2 is extended to
arbitrary models.

Remark 5.3 [Consistency with linear models] When the model is exactly linear in the parameter as
in (5.3.1), the Jacobian is ∂f/∂θ = V (z) so (5.5.3) is consistent with the definition of Vt in Definition 5.1.
Therefore, (5.5.3) can be viewed as a generalization of the optimal experimental design exploration
of Section 5.4 to nonlinear models.

5.5.3 Computational perspective

In Algorithm 5.2, we need to compute D = ∂v/∂x, which amounts to computing the derivatives of f
in both θ and z:

∂v

∂x
=

(
∂2f (i)

∂x∂θ

)
∈ Rn×d. (5.5.5)

For neural networks, this matrix can be computed by automatic differentiation. The cost of solv-
ing (5.4.5) does not depend on n so the computation of D becomes the computational bottleneck for
large models. The complexity of the latter operation is O(nd) with automatic differentiation.

5.5.4 Sequential learning

We train nonlinear models using online gradient descent:

θt+1 = θt − Γt∇`t(θt), (5.5.6)

which extends (5.3.11b). For neural networks, online learning with an adaptive learning rate, corre-
sponding to scalar Γt = γt ∈ R, is known to be effective (Bottou, 2012; Kingma and Ba, 2015). The
gradient step can be averaged over a batch for smoother learning, at the cost of storing a small amount
of data points.
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5.6. Experiments

We run several experiments to validate our method. Our code and a demonstration video are available
at https://github.com/MB-29/exploration. More details about the experiments can be found
in Appendix C.

5.6.1 Exploration benchmark

We first test our policy on various nonlinear environments from classical control, covering different
values for d and m. We compare its performance in terms of sample efficiency to that of various
baselines. The agents have the same learning model, but different exploration policies. Random
exploration draws inputs at random. For pendulum-like environments, a periodic oracle baseline
excites the system at an eigenmode, yielding resonant trajectories of large amplitude. A baseline
called “uniform" maximizes the distance of the trajectory points in the state space: it optimizes
objective (5.4.2) with U(x) = 1

2

∑t
s=0 ‖x− xs‖2.

Experimental setup The learning models include various degrees of prior knowledge on the dynamics.
A linear model is used for the pendulum, and neural networks are used for the other environments.
The Jacobians of Proposition 5.2 are computed using automatic differentiation. At each time step, the
model is evaluated with (5.2.3) computed over a fixed grid.

Results The results are presented in Figure 5.2. Our algorithm is sample-efficient and it outperforms
the baselines in all the environments. We also display the trajectories obtained with our policy in phase
space in Figure 5.3. Not only does FLEX produce informative trajectories of large amplitude, but
more specifically it devotes energy so as to explore regions with higher uncertainty, unlike the baselines.
Although the policy optimizes the information in a greedy fashion, it interestingly produces inputs
with long-term temporal coherence. This is illustrated in our demonstration video. High-dimensional
exploration is tackled in Appendix B.

5.6.2 Tracking of time-varying dynamics

In real systems, dynamics may vary over time and an adaptive exploration is crucial for accommodating
to changes in the environment. We test the adaptivity of our method by exploring a time-varying
system, and compare to an episodic agent. The system is a central, repulsive force field centered on a
star, moving around a circle uniformly at a period T . The agent is a spaceship and the control variable
is the acceleration. The force field varies significantly only in the vicinity of the star: the spaceship
learns information about the dynamics only when it is close, and hence needs to track the star.
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Figure 5.3. Trajectories in phase space.
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Experimental setup The model learns the center and the radius of the force field, yielding a nonlinear
parameterization (see Appendix C.2). With this model, three agents learn the dynamics: a random
policy, FLEX, and an episodic agent that plans D-optimal inputs by solving (5.3.10) over a time
horizon of T/20 = 50 repeatedly. At each time step, the model is evaluated in the parameter space
with the distance to the real system parameters at the current time.

Results The trajectories and the error curves are presented in Figure 5.4. Although the episodic
agent initially follows the star, it eventually loses track of the dynamics because of the delay induced
by planning over a time interval. Our adaptive policy, on the other hand, successfully explores the
dynamics. Even though the planning of inputs has linear time complexity in T in both cases, we
observe a slowdown by a factor 100 for the episodic agent. We believe that this experiment on this toy
model illustrates the relevance of an adaptive exploration policy in realistic settings.

5.6.3 From exploration to exploitation

The goal of exploration is ultimately to obtain an accurate model for the system for model-based
control. In order to validate the relevance of our approach to this framework, we evaluate the
model learned during exploration on model-based control tasks. We compare it to the recent active
exploration algorithms RHC and MAX (Schultheis et al., 2020; Shyam et al., 2019) and to the model-free
reinforcement learning algorithm SAC (Haarnoja et al., 2018).

Experimental setup We experiment on the pendulum and the cartpole of the DeepMind control
suite (Tunyasuvunakool et al., 2020), for which we added noise. Throughout exploration, the learned
model is evaluated using both (5.2.3) and with the exploitation cost achieved by a model-based
control algorithm on the swingup task. The experimental details can be found in Appendix C.3 and
in (Schultheis et al., 2020) along with the performance of the algorithms used for comparison. The
control task is considered solved when the cost is lower than a value that we have chosen arbitrarily
based on simulations.

Results Our results are presented in Table 5.1 and in Figure 5.4. Our algorithm is sample-efficient in
terms of exploitation, as it allows for a model-based control algorithm to solve the task faster than the
other baselines. Its computational cost is low.

5.6.4 Exploration in a high-dimensional environment

We propose an additional experiment showing the behaviour of our algorithm in high dimension. The
nonlinear system we consider is a chain of n coupled damped pendulums, with unknown friction. Each
pendulum is coupled with its two nearest neighbors. Only the first pendulum is actuated and the
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...

u θ

gravity

Figure 5.5. Chain of n coupled pendulums.

motion of the rest of the pendululms is due to the successive coupling (Bitar et al., 2017). Exploration
of the system consists in finding the friction forces on the pendulums. The system is illustrated
in Figure 5.5. We believe that this system is illustrative for the typical setup of system identification.
In robotics for example, the experiment seeks to measure the parameters of a humanoid constituted of
large number of joints. Furthermore, the system we propose poses both challenges of large dimension
and underactuation. Indeed, the dimension of the state space is d(n) = 2n, and only one of the n
pendulums is actuated, the motion being propagated from neighbor to neighbor. This experiment
allows us to monitor both the sample efficiency and the computational cost of FLEX in a challenging
setting of large dimension.

Experimental setup The system is modeled with a linear model with unknown friction coeffi-
cients θ ∈ Rn from observations xt ∈ R2n. We define the sample complexity as the number of samples
required to obtain a 10−2 parameter error. For different values of n, we measure the sample complexity
and the computational time of Random and FLEX.

Results We provide our results in Table 5.3. These results capture the behavior of the algorithm when
the dimension d grows. Our algorithm FLEX seems to reach a linear sample complexity with respect
to d, with reasonable computational time, whereas random exploration fails to explore and yields
super-linear sample complexity. Our results suggest that despite larger computational cost, FLEX
remains sample efficient and competitive in high-dimensional environments.

5.7. Related work

Active linear system identification Exploration of linear systems has been studied extensively in
the control community (Goodwin and Payne, 1977) and more recently in the machine learning
community (Simchowitz et al., 2018; Jedra and Proutiere, 2020; Wagenmaker et al., 2021; Even, 2023).
From the practical point of view, an online and fast exploration policy is introduced in (Blanke and
Lelarge, 2022). Although linear models may describe nonlinear systems locally, they are not sufficient
for designing complex model-based control laws (Tassa et al., 2014).

Table 5.1. Number of observations required to solve the swingup task (first row) and average
computation time per observation (second row) for the pendulum (top rows) and the cartpole (bottom
rows).

Method RAND MAX SAC RHC FLEX
samples > 2k 2000 > 2k 500 50
compute 1 100 2 8 4
samples > 2k > 2k > 2k 600 300
compute 1 20 1.5 2 1.6
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Nonlinear exploration Several methods have been proposed to learn nonlinear dynamics and to model
uncertainty, including model-error control synthesis (Crassidis, 1999), Gaussian processes (Buisson-Fenet
et al., 2020), Random Fourier Features (Schultheis et al., 2020), and neural networks ensembles (Shyam
et al., 2019; Sekar et al., 2020). The latter approaches are computationally heavy, which is an issue
slow for real-time applications. From a theoretical point of view, exploration with nonlinear models is
addressed by Mania et al. (2020) and Wagenmaker et al. (2023). These works introduce theoretical
bounds for the parameter estimation error, and derive asymptotically optimal algorithms. Unlike our
online policy, the proposed input design algorithm plans over exponentially large epochs, which is
computationally prohibitive for real-time applications.

Experimental design for neural networks The extension of optimal experimental design to neural
networks is proposed in (MacKay, 1992) for static systems, and in (Cohn, 1993) for dynamical systems
with an offline algorithm and a focus on G-optimal designs.

5.8. Conclusion

We proposed an exploration algorithm based on D-optimal design, running online and adaptively. Our
experiments demonstrate its sample efficiency both in terms of exploration and exploitation, its low
computational cost and its ability to track time-varying dynamics. These results are encouraging for
applications on real systems.

Although it is not the focus of our work, the online learning rule conditions the quality of exploration.
In particular, the agent should be able to learn with bounded memory to meet the computational
requirements of embedded systems. While we used a rather naive online learning algorithm, recent
advances in the communities of machine learning and control are promising for learning dynamics
online (Min et al., 2022). The computational cost of our method is dominated by the calculation of
derivatives. Automatic differentiation is an active research field and we believe that progress in that
direction can be made to reduce this cost.

It would be interesting to generalize FLEX to the more realistic setting of a partially observed state
model (Goodwin and Payne, 1977). Another research direction is to use our exploration objective as
an exploration bonus in the exploration-exploitation trade-off.

Interestingly, the information-theoretic considerations of active learning can also be adapted for the
inverse problem of unlearning, where the goal is to forget about certain data points rather that to actively
select new data. This subject has recently sparked interest in the deep learning community (Bourtoule
et al., 2021; Fraboni et al., 2024).

Table 5.2. Performance of algorithms Random and FLEX for the exploration of the n coupled
pendulums.

n 2 5 10 20 50
d 4 10 20 40 100

Random
sample complexity 20 100 200 500 > 1000
computational time 1 2 6 60 250

FLEX
sample complexity 10 50 100 200 500
computational time 3 5 10 80 350
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Chapter 6

Incremental neural data assimilation

Data assimilation is a central problem in many geophysical applications, such as weather forecasting.
It aims to estimate the state of a potentially large system, such as the atmosphere, from sparse
observations, supplemented by prior physical knowledge. The size of the systems involved and the
complexity of the underlying physical equations make it a challenging task from a computational
point of view. Neural networks represent a promising method of emulating the physics at low cost,
and therefore have the potential to considerably improve and accelerate data assimilation. This
chapter presents preliminary results of a neural approach to data assimilation. We introduce a deep
learning framework where the physical system is modeled as a sequence of coarse-to-fine Gaussian
prior distributions parametrized by a neural network. This allows us to define an assimilation operator,
which is trained in an end-to-end fashion to minimize the reconstruction error on a dataset with
different observation processes. We illustrate our approach on chaotic dynamical physical systems with
sparse observations, and compare it to traditional variational data assimilation methods.

Chapter organization This chapter is organized as follows. Section 6.1 presents the data assimilation
problem and its challenges. Section 6.2 poses a Bayesian statistical framework of this problem, and
introduces the Gaussian least-squares interpolation method. In Section 6.3, we present a neural
architecture for data assimilation. We experiment on simulated physical systems in Section 6.4.
Section 6.5 compares our contribution with related works. Section 6.6 summarizes our contributions
and discusses its limitations and perspectives.

This chapter is based on the article Incremental Neural Data Assimilation (Blanke et al., 2024),
accepted at the ICML 2024 AI for Science workshop (ICML 2024 AI4Science).
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6.1. Introduction

Artificial intelligence is transforming many fields, and has a growing number of applications in industry.
In the sciences, it has the potential to considerably accelerate the scientific process. Geophysics and
weather forecasting are areas where deep learning is particularly active, with recent months seeing an
explosion in the number of large neural models for the weather forecasting problem (Pathak et al., 2022;
Lam et al., 2022; Hoyer et al., 2023), building on reanalysis datasets such as ERA5 (Muñoz-Sabater
et al., 2021) for training. In this work, we focus on the data assimilation problem that underpins
weather forecasting: tomorrow’s weather forecast is based on today’s weather conditions, which are
not directly measured, but are estimated from few observations. Data assimilation is the inverse
problem of estimating the geophysical state of the globe on the basis of these sparse observations and
of prior knowledge of the physics. The estimated state then serves as the starting point for forecasting.
While deep learning models are revolutionizing the forecasting problem, they have yet to be applied
operationally to data assimilation.

The application of neural networks to inverse problems is an active area of research. The general idea
consists in training a neural network to reconstruct a signal, using for training examples a dataset
of simulated physical states serving as ground truth. For the data assimilation problem, several
approaches have been proposed to incorporate a deep learning in the loop. Arcucci et al. (2021)
propose a sequential scheme where a neural network is trained at regular time steps to combine data
assimilation and the forecasting model. Recently, the success of diffusion models for imaging (Ho et al.,
2020) has led to the development of so-called "plug and play" methods, where the neural network is
trained to learn a prior (Laumont et al., 2022). Once trained, the neural prior can be used to solve
a large number of inverse problems. In this line of work, Rozet and Louppe (2023) proposed a data
assimilation method based on a diffusion model. Another type of approaches called “end-to-end” aim
at directly training a neural network to minimize the reconstruction error. They have the benefit of
training the network directly on the task of interest, but the versatility of the trained model with
respect to the different observational processes is challenging. An end-to-end neural reconstruction
algorithm is proposed in (Fablet et al., 2021b), and aims to learn the prior distribution of the signal
by defining the reconstruction as a maximum a posterior estimate, leading to a bi-level optimization
problem. However, the complex prior induced by the neural network may hamper the convergence of
this estimate, as it relies on non-convex optimization. Instead, we explore a model where the prior has
a sufficiently simple structure to guarantee a convex posterior distribution.

Contributions In this chapter, we present a neural method for data assimilation. We introduce a data
assimilation operator parametrized by a neural Gaussian prior, that is designed to locally improve the
likelihood of an estimate. Our model is trained to minimize the reconstruction error in an end-to-end
fashion. We show how this operator may be iterated to reconstruct complex signals. The effectiveness
of our method is demonstrated on simulated nonlinear physical systems. We also show how our method
may be used to enhance traditional data assimilation methods.

6.2. The data assimilation inverse problem

In this section, we recall the mathematical framework of data assimilation that we introduced in Chap-
ter 2, Section 2.4.

The aim of data assimilation is to reconstruct a state x ∈ Rd from partial noisy measurements y ∈ Rm
of that state (Bouttier and Courtier, 2002; Bocquet et al., 2014). For meteorological applications,
for instance, the state x represents the physical quantities on a grid representing the globe, and
the observations y are partial measurements, from different sources: in situ measurements, weather
balloons, satellites, . . . These measurements may be very sparse, with an observation rate m/d that may
be of the order 1%, so we cannot generally hope to recover the state as a function of the observations
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alone. Indeed, for a given observation vector y, a large number of states are compatible, making
data assimilation an inverse problem. To reconstruct the state, we need to supplement the partial
observations with another source of prior information on the state, which comes from our physical or
statistical knowledge of the problem.

The data assimilation problem is then as follows. Given partial observations y and prior information
on the state, the aim is to estimate the most probable underlying state x. The Bayesian probabilistic
framework lends itself well to the mathematical formalization of the problem : the theoretical
information about the state physics is captured by a prior distribution x ∼ p(x), and the noisy,
partial observations of x can be modeled as y|x ∼ h(x) + ξ, with h the observation process, and an
unbiased additive noise that is typically assumed to be Gaussian ξ ∼ N (0, R) and independent of x.
Then, data assimilation can be seen as the estimation of the state maximizing the state posterior
distribution p(x|y) = p(x)p(y|x)/p(y). Under the assumption of Gaussian observational noise, this can
be formulated as the following minimization problem

minimize
x∈Rd

U(x) +
1

2
‖h(x)− y‖2R−1 , (6.2.1)

with U(x) = − log p(x), and where we have adopted the notation ‖z‖C =
√
z>Cz for a positive definite

matrix C. We assume for simplicity that the observation function h is known, although it may be only
partially known in some cases, such as remote sensing (Liang, 2005) or medical imaging (Rangayyan
and Krishnan, 2024).

Problem size For weather prediction, the state x represents the geophysical variables on a large
spatial grid. It is hence a signal of very high dimension with typically d ∼ 106 or even d ∼ 109. The
size of the data assimilation problem makes the computations and memory costs very heavy, severely
limiting the computational budget of any numerical method. In the development of new learning-based
methods, it is essential to keep this computational constraint in mind if we hope to scale up to real-size
systems.

6.2.1 Least-squares Gaussian interpolation

The first approach considered for data assimilation is naturally that of a linear-Gaussian model, as
we saw in Section 2.4.2 of Chapter 2. Assuming a Gaussian a priori on the state x ∼ N (µ, P ) and a
linear observation function h(x) = Hx, with H ∈ Rm×d, the variational Bayesian formulation for data
assimilation (6.2.1) becomes a quadratic least-squares problem:

minimize
x∈Rd

1

2
‖x− µ‖2P−1 +

1

2
‖Hx− y‖2R−1 (6.2.2)

whose maximum a posteriori solution takes the form

xMAP(y;µ, P ) := µ+K(y −Hµ), (6.2.3)

with the H-dependent Kalman gain

K = PH>(HPH> +R)−1 ∈ Rm×d. (6.2.4)

In the remainder of this work, the dependence with respect to H is implicitly assumed in all quantities
that depend on the observation vector y.

For meteorological applications, the state x that is optimized for is a snapshot of the set of geophysical
variables at a given time, when the observations have been collected. The background term µ is the
forecast of this state from the past observations.
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Computational cost For large-scale applications, solving (6.2.2) by computing the closed-form ex-
pression (6.2.3) yields a O(m3 + dm) complexity in general, as it involves solving a m × m linear
system and computing a matrix-vector products of size d × m. In operational geophysical appli-
cations, this cost may be a bottleneck as d and m may reach prohibitively large values. To avoid
such costs, (6.2.2) is solved by such as conjugate gradient (Fletcher and Reeves, 1964). In the data
assimilation community, this variational approach for the estimation of a large-scale geophysical spatial
state is called 3D-Var (Courtier et al., 1998).

6.2.2 Spatio-temporal data assimilation

So far, the prior knowledge of the state has taken the form of a Gaussian distribution, which can
capture the proximity of the searched state to an estimate, and the correlations of one state variable
to another. Least squares interpolation then searches for the state most faithful to the data, within a
fluctuation zone around the estimate. Although simple and analytically solvable, this approach does
not use signal physics equations as prior information.

In the 1990s, the quality of data assimilation analyses improved significantly by incorporating a
physical model to the reconstruction prior, leading to the state-of-the-art variational assimilation
algorithm 4D-Var (Le Dimet and Talagrand, 1986). This algorithm is a generalization of 3D-Var
to time-distributed observations, where the estimated signal x is a temporal sequence of the spatial
geophysical state on a time window, i.e. a trajectory, rather than one single snapshot. The temporal
dimension allows formulating the system’s dynamical equations as a constraint for the signal. The
reconstruction algorithm is applied sequentially on a sliding time window, in combination with a
forecasting model, to produce regularly updated estimates of the meteorological variables. Alongside 4D-
Var, other algorithms exist for data assimilation of dynamical systems, including sequential methods
such as the celebrated Kalman filter, and its extensions to nonlinear models (Jazwinski, 2007), and
to ensembling (Evensen, 2003). In this work, we focus on the so-called weak-constraint 4D-Var
algorithm (Trémolet, 2007; Fisher et al., 2012), which we briefly explain next. Weak-constraint 4D-Var
has the advantage being naturally related to the Bayesian formulation (6.2.1), and is used in operational
systems.

For simplicity, we abstract from the time dimension in our mathematical formalism, and still denote
the spatio-temporal signal as x ∈ Rd. The knowledge of a physical dynamical model materializes as
knowledge of a prior distribution U(x) in (6.2.1), which can be computed and differentiated through
with respect to x. In geophysics, this model is typically a fluid dynamics simulator, and its gradients
are computed using the adjoint method (Talagrand and Courtier, 1987). Hence, the resulting U(x) is
more complex and more informative than a Gaussian prior, but comes with heavy computational costs.
In the remained of this work, we assume that the observational processes are linear: h(x) = Hx. In
practice, h is nonlinear and is sequentially approximated by its linear approximation. We argue that
linearizing the physical model is computationally far more expensive than linearizing the observational
process, and hence that considering only linear observations does not severely restrict the problem
generality.

The weak-constraint 4D-Var algorithm aims to minimizing (6.2.1) by a Gauss-Newton descent al-
gorithm (Gauss, 1877), with line-serach correction (Nocedal and Wright, 1999). More precisely, a
sequence of estimates {zk, 1 ≤ k ≤ L} approximating the reconstruction signal is iteratively computed.
At each iteration k, the objective function is approximated by its quadratic expansion in the vicinity
of zk ∈ Rd. Specifically, the prior term is approximated as

U(x) ' U(z) +∇U(z)>(x− z) +
1

2
(x− z)>∇2U(z)(x− z). (6.2.5)

We may express expansion (6.2.5) as a Gaussian log-likelihood:

U(x) ' 1

2
‖x− µ(z)‖2P (z)−1 , (6.2.6)
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with
P (z) ' ∇2U(z)−1, (6.2.7a)

µ(z) = z − P (z)−1∇U(z), (6.2.7b)

the approximation above referring to the gradient-Hessian approximation.

Weak-constraint 4D-Var is described in Algorithm 6.1. We see that the sequence of estimates (zk) is
iterated with a recursion of the form

xk = A(zk, y) (6.2.8a)

zk+1 = zk + αk(xk − zk), (6.2.8b)

where assimilation operator A improves the current estimate z using the observations and the local
approximation of the model, by performing a local optimal interpolation:

A(z, y) = xMAP(y;µ(z), P (z)). (6.2.9)

Limitations The 4D-Var algorithm represents the state of the art for data assimilation in geophysics,
and is deployed in operational meteorological centers. Its main limitation is the high computational
cost of simulating and differentiating through the physical model. In Algorithm 6.1, each computation
of Pk and µk comes with a large cost in addition to the cost of computing (6.2.9), hence limiting
the method’s accuracy. Note that this method may also be viewed as an application of the iterative
Kalman smoother (Bell and Cathey, 1993; Ménard and Daley, 1996; Fisher et al., 2005; Mandel et al.,
2013). As is well known, an additional limitation of this method is that the non-convexity of U may
lead to a complex minimization landscape, making the descent algorithm likely to be stuck in local
minima (Gratton et al., 2007; Mandel et al., 2013). In the next section, we propose to overcome these
limitations by learning operator A from data.

6.3. Neural data assimilation

Deep neural networks hold great promise for solving inverse problems (Bai et al., 2020), as they can
help recover the corrupted signal by using the large amount statistical information acquired on a
training dataset. For the data assimilation problem in meteorology or oceanography, the ground truth
signals x are not available as the geophysical systems are not observed. However, a promising research
direction consists in training a deep neural network to learn a prior on high-resolution simulations, or
on the reanalysis datasets such as ERA5, like neural weather models (Ben Bouallègue et al., 2024).

Deep learning approaches to inverse problems may be separated in two categories (Mukherjee et al.,
2021). A first category of algorithms aims to learn a prior U(x) from a training dataset, using a neural
network, independently of the inverse problem. Once trained, the learned prior can be adapted to a
reconstruction algorithm to reconstruct the signal. These algorithms are often called “plug-and-play",
as the trained neural prior can be used for any downstream inverse problem. In a second category of
algorithms, referred to as “end-to-end” learning algorithms, the neural network is explicitly trained
to solve the inverse problem. In this case, the training consists of minimizing the neural network’s
reconstruction error, based on a dataset of state and observations pairs (x(i), y(i)).

One challenge in training end-to-end algorithms is the multiplicity of possible observation processes: the
trained neural network must be compatible with all possible (x, y), and hence with varying observation
processes H, with different dimensions m for the observations. It should therefore model only the prior
distribution U(x), and not depend directly on the observation process H.
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6.3.1 Neural assimilation operator

We adopt an end-to-end learning approach, and we aim at learning a neural assimilation algorithm
by minimizing a reconstruction error. We observe that, unlike other inverse problems such as image
inpainting, data assimilation often starts with a first physically plausible estimate z of the unknown
state. Therefore, rather than learning to interpolate the observations from scratch, we train a neural
network to improve the state estimate given z. Drawing inspiration from the 4D-Var algorithm, we
learn an assimilation operator A(z, y; θ), where θ denotes the parameter vector of a neural network.
As in (6.2.6), we model the local prior distribution conditioned on z as a Gaussian prior

x|z ∼ N (µ(z; θ), P (z; θ)), (6.3.1)

where µ(z; θ) and P (z; θ) are trainable neural networks. Given this Gaussian prior, the observations
are incorporated by solving the least-squares interpolation (6.2.2):

A(z, y; θ) = xMAP(y;µ(z; θ), P (z; θ)). (6.3.2)

Versatility As we pointed out, the trained neural network should be compatible with arbitrary
observation processes. By formulating it as the solution of a y-dependent interpolation problem, our
assimilation operator (6.3.2) is defined for any observation process (H, y), although the underlying
neural networks models only the prior distribution. In particular, the neural networks involved depend
neither on y, nor on H: the neural assimilation operator (6.3.2) combines the observations with a
neural prior (6.3.1) of the state through the computation of a maximum likelihood estimator, and
this computation is valid for any (H, y) pair for the same neural network. At prediction time, the
trained neural networks µ(z; θ), P (z; θ) may be used to assimilate a new observation y obtained from
an arbitrary observation process H by solving (6.3.2).

Training Given a dataset (x(i), y(i), z
(i)
0 ) consisting of signals x(i) and partial observations y(i) obtained

from different observation processes H(i), supplemented with coarse estimates z(i) of the signal, the
neural prior (6.3.1) is trained to minimize the reconstruction error with the following objective:

minimize
θ∈Rn

N∑
i=1

‖A(z(i), y(i); θ)− x(i)‖2

with A(z, y; θ) = xMAP(y;µ(z; θ), P (z; θ)).

(6.3.3)

We train our model by minimizing (6.3.3) using stochastic gradient descent, with the ADAM opti-
mizer (Kingma and Ba, 2015). This training objective takes the form of a bi-level optimization problem.
Solving the inner optimization problem involves computing the optimal interpolation (6.2.3), which is
computed solving a linear system of size m. We need to propagate the gradients with respect to θ
through this no-trivial operation during training. This may be handled by implicit differentiation,
allowing to compute the gradients of the solution with respect to θ, without explicitly inverting the
system’s matrices (Johnson, 2012).

This training objective is similar to that of (Fablet et al., 2021b), where a neural interpolator
called 4DVarNet is used to learn both the global prior U(x) and the minimization algorithm of (6.2.1),
rather than a local operator A(z, y) 7→ x. In our case, however, the inner optimization problem (6.2.1)
can be solved explicitly because the cost is quadratic. In contrast, it is only approximately solved in
the case of 4DVarNet, due to the non-convexity of the inner cost.

Computational cost As we mentioned, the large size of the targeted physical systems requires carefully
considering the computational cost of the data assimilation methods. We model P as a band matrix,
hence limiting both the memory storage to a O(d) cost and the computational complexity of solving
the linear system in (6.2.3) using the Thomas algorithm (Datta, 2010). This structure also imposes a
temporal structure in the signal.
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6.3.2 Incremental neural data assimilation

Since our assimilation operator is trained to reconstruct the signal from a coarse approximation, a
one-shot reconstruction is likely to yield blurry results. To improve reconstruction, we may iterate this
operator, with the aim of progressively improving the reconstruction signal. Building on the recent
advances of cold diffusion (Bansal et al., 2024), we propose an iterative strategy aiming at reconstructing
the signal in a coarse-to-fine fashion. We introduce a scalar temperature parameter 0 ≤ s ≤ 1 modeling
the coarseness of the reconstruction, and we allow our neural prior to depend on s as µ(z; θ, s), P (z; θ, s).
Intuitively, the prior should be coarser for larger values of s, and become sharper and more local
as s → 0. We provide estimates zk at different temperature levels {s1 ≥ · · · ≥ sL} as linear
interpolations between z0 and zL := x:

z
(i)
k = skz

(i)
0 + (1− sk)z

(i)
L . (6.3.4)

Our training objective is adapted as

minimize
θ∈Rn

L∑
k=1

N∑
i=1

‖A(z
(i)
k , y(i); θ, sk)− x(i)‖2. (6.3.5)

At prediction time, the signal is reconstructed by iteratively applying A(z, y; θ, s) following the
sampling algorithm introduced in (Bansal et al., 2024). We provide a detailed description of our
iterative reconstruction method in Algorithm 6.2.

Algorithm 6.1 Incremental weak-constraint 4D-Var
input observation vector y ∈ Rm, observation
matrix H, iteration number L, initial estimate z0,
tangent linear physical model µ, P
output state estimation zL
initialize z0 := x0

for 0 ≤ k ≤ L− 1 do
compute Pk := P (zk), µk = µ(zk)
estimate xk = xMAP(y;µk, Pk)
compute line search parameter αk
update zk+1 = zk + αk(xk − zk)

end for

Algorithm 6.2 Incremental neural data assimilation
input observation vector y ∈ Rm, observa-
tion matrix H, iteration number L, initial esti-
mate z0, neural models µ, P , trained weights θ
output state estimation zL
initialize z0 := x0

for 0 ≤ k ≤ L− 1 do
compute Pk := P (zk; θ, sk), µk = µ(zk; θ, sk)
estimate xk = xMAP(y;µk, Pk)
compute temperature parameter sk
update zk+1 = zk + sk(xk − z0)

end for

6.4. Experiments on physical systems

In order to evaluate the performances of our data assimilation algorithm, we experiment on two
simulated dynamical systems: the pendulum and the Lorenz 63 dynamical systems. We train our
neural model on a dataset generated from the dynamical system with different trajectories x sampled
from random initial conditions, and different observation processes, leading to various (x, y) pairs
for the same x. Our JAX implementation of our neural assimilation algorithm is available online
at https://github.com/MB-29/assimilation.

Architecture We take for µ(z; θ, s) and P (z; θ, s) two fully-connected neural networks of depth 4 and
width 32. The dependence with respect to s is implemented as a positional embedding. The d × d
matrix P is modeled as a band matrix with bandwidth b = 2ϕ, with ϕ the phase space dimension.

Baselines We compare our neural assimilation algorithm with various baseline. Each method starts
from a first guess estimate z0 of the signal, computed by performing a Gaussian interpolation from
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6.4. Experiments on physical systems

the observations (see below). We implement the weak-constraint 4D-Var algorithm as a Levenberg-
Marquardt Gauss-Newton Algorithm using the JAXopt implementation (Blondel et al., 2021), and
the Diffrax library for differentiating through differential equation solvers (Kidger, 2021). As an ablation,
an “unconditional” cold diffusion model is trained to restore the signal by minimizing objective (6.3.5)
without the information provided by the observations. It is then applied following Algorithm 6.2 just
as our neural assimilation algorithm, without using y. The resulting reconstructed signal depends on
the observations only through the first estimate z0, which is computed to match y, but the neural
network is trained to compute the next iterates by increasing only the prior term U(x) in (6.2.1), not
the observation likelihood.

6.4.1 Pendulum

We start with the pendulum, which is arguably one of the simplest nonlinear physical systems.
Importantly, the pendulum is simple enough to be decently approximated by linear dynamics. It can
be shown that a linear dynamical model with Gaussian model noise yields a Gaussian prior distribution
for the trajectory x. Therefore, a natural first guess for the pendulum consists in the quadratic
least-squares estimator z0 := xMAP(y;µ0, P0), where µ0 and P0 can be computed analytically as a
function of the initial condition distribution and the pendulum’s linear model. Starting from this
estimate, we run the baselines and our neural assimilation algorithm.

Data We generate discrete trajectories x(i) of T = 100 time steps from the nonlinear pendulum
dynamics with random initial conditions sampled in phase space, which is of dimension 2, hence d =
2× 100 = 200. The observations are generated by observing the pendulum’s position at sparse time
steps, with Gaussian observation noise ξ ∼ N (0, ρ2Im), with ρ = 0.01.

Experimental setup We train an adaptation operator to reconstruct the signal in one shot from z0,
following (6.3.3). At prediction time, we apply the trained neural assimilation map A(z; y; θ) to z0 on
a separate independent dataset.

Results Reconstruction samples are presented in Figure 6.1. While the linear model fails at re-
constructing the trajectories outside the linearization zone (angle and momentum close to 0), one
application of our neural assimilation operator accurately reconstructs the signal. The performances
of the various methods are shown in Table 6.1. Although the pendulum is simple enough for all the
methods to accurately reconstruct the signal, we see that the computational gain offered by a train
neural network is considerable with respect to computing the physical model.
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Figure 6.1. Reconstructed trajectories for the pendulum.

6.4.2 Lorenz 63

We now turn to a more complex system. The Lorenz system is a simplified physical model for
atmospheric convection (Lorenz, 1963). Three variables are governed by the following set of coupled
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nonlinear ordinary differential equations:

du1

dt
= σ(u2 − u1)

du2

dt
= ρu1 − u2 − u1u3

du3

dt
= u1u2 − βu3.

(6.4.1)

We set σ = 10, ρ = 28 and β = 8/3, values for which the system is known to exhibit chaotic solutions.
We sample the initial conditions in the system’s stationary distribution, following the experimental
setup of (Rozet and Louppe, 2023).
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Figure 6.2. Reconstructed trajectories for the Lorenz 63 system.
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Figure 6.3. Output of 4D-Var from various initializations.

Data We generate datasets of trajectories by integrating (6.4.1) between time steps of length dt = 0.025,
and adding a small amount of Gaussian noise η ∼ N (0,dtI3) at each time step. The number of time
steps is T = 32, hence d = 96. We normalize each component of the trajectory to have zero mean and
unit variance. The observations are sparse samples from the first component u1 only, with observation
noise of size 0.05. We take for the initial state estimate z(i) the maximum likelihood interpolation of y(i)

under the moment-matching Gaussian distribution of x(i), which is the coarse Gaussian approximate
of p(x). More precisely, z(i)

0 = xMAP(y(i); µ̂, P̂ ), with µ̂ and P̂ the empirical mean and the empirical
covariance of {x(i)}. We define {z(i)

k } as in (6.3.4) with regular spacing sk = 1 − k/(L + 1). We
take L = 5.

Experimental setup We train our neural assimilation operator to reconstruct the signal at different
temperatures following (6.3.5). At prediction time, we apply Algorithm 6.2 for the neural methods,
along with the 4D-Var algorithm (Algorithm 6.1). Furthermore, in order to establish a link between
our new neural method and traditional assimilation methods, we investigate how the output of the
neural method, which is a priori not interpretable, may be transformed into a plausible physical signal.
To do this, we correct these estimates with several iterations of 4D-Var on top of the neural estimate of
the signal, with a fixed maximal number of 25 iterations. As a result, the new output is constrained to
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Table 6.1. Performances of the various approaches. The computational time unit is the run-time of the
fastest of the algorithms at prediction time.

Method 4D-Var Cold diffusion Neural assimilation
Pendulum error 0.1 0.15 0.1
Lorenz 63 error 0.9 1.1 0.5
Computational time 10 1 2

satisfy the physical model, but potentially at a lower cost than if we had started from scratch because
the initialization that we provided is already close to the true signal.

Results Figure 6.2 shows reconstruction samples from the baselines and from our method, and Table 6.1
shows the average reconstruction error for the various methods. We can see that our neural data
assimilation algorithm can reconstruct the signal while staying close to the observations. In contrast,
the unconditional baseline cannot efficiently improve both the signal likelihood and the data fidelity.
Compared to 4D-Var, our neural approach offers considerable computational gains, and good accuracy
in these experiments. Further, we compare the reconstructed signals corrected by 4D-Var for an
observation sample in Figure 6.3, where a fixed number of 4D-Var iterations are applied to two
different initializations: the Gaussian first-guess and the neural reconstruction of our algorithm. The
initialization provided by our method allows to recover the original signal with very high accuracy by
running few steps of 4D-Var on top of the neural estimate, while the 4D-Var algorithm with Gaussian
initialization (“vanilla”) leads to an inaccurate local minimum. Importantly, the improvement with
respect to a Gaussian initialization is significant, both in terms of reconstruction error and in terms of
number of iterations, as the 4D-var algorithm converged after 4 iterations from the neural initialization
and 23 iterations from the Gaussian initialization. We further discuss the comparison between deep
learning data assimilation approaches and 4D-Var in Section 6.6.

6.5. Related work

The state of the art methods for data assimilation are the 4D-Var algorithm (Le Dimet and Talagrand,
1986; Trémolet, 2007) and the ensemble Kalman filter (Evensen, 2003; Bocquet et al., 2014). The
statistical component in these approaches lies in the definition of covariance matrices for the background
state estimates, for the model and for the observations. The numerical cost of computing the physical
model and its linear tangent local approximation may be considerable for large systems.

In recent years, several deep learning algorithms have been proposed for the data assimilation problem.
Building on diffusion models (Ho et al., 2020), Rozet and Louppe (2023) propose a data assimilation
method based on score-based diffusion. This approach proceeds in a plug-and-play fashion, and
sampling from the posterior distribution relies on an approximation that is computed on the trained
model. Among “end-to-end” deep learning approaches for data assimilation, the one that is closest
related to ours is the 4DVarNet algorithm of Fablet et al. (2021b), which aims to directly train a neural
network to minimize the reconstruction error. The complex prior modeled by the neural network is
non-Gaussian, and estimating the maximum a posteriori reconstruction in this framework relies on
non-convex optimization.

6.6. Conclusion

In this work, we have shown how deep learning methods may be applied to the data assimilation
problem. Our neural method models the signal in a coarse-to-fine fashion and is trained to minimize
the reconstruction error. Importantly, we have shown how such a deep learning method may be used
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in combination with a traditional data assimilation method to enhance the reconstruction accuracy
and reduce the computational time.

We believe that deep learning methods alone might not be accurate enough to completely outperform
traditional physics-based approaches such as 4D-Var. While our neural approach had good reconstruc-
tion results on the presented simulated physical systems, it should be noted that the small size of these
systems allows for the neural network to learn the stationary distribution from a reasonably small
dataset. For real-life systems, it is unlikely that a neural network can accurately generalize the learned
signal outside a training dataset, where the physics may be complex and fairly different from what the
model has seen. In contrast, physics-based approaches are far more general, as the simulated physical
laws are accurate everywhere in the state space. Therefore, using a deep learning algorithm to provide
an approximate solution, and using it as an input to 4D-Var to reduce the number of iterations seems
like a good trade-off benefitting the best of both words.

In future work, it would be interesting to apply our method to physical systems of larger scale,
and to explore how the computational burden of data assimilation may be further reduced on such
high-dimensional systems. Another important aspect that is crucial for data assimilation is uncertainty
quantification, for which there has been recent progress in the deep learning community (Arcucci et al.,
2021; Corso et al., 2022).
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Chapter 7

Conclusion

The final chapter of this thesis summarizes our contributions and discusses several limitations, some
possible extensions and the open problems of the research area.

Chapter organization This chapter is organized as follows. Section 7.1 summarizes our contributions.
Section 7.2 highlights the key messages of this thesis. Section 7.3 discusses perspectives and future
work.
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7.1. Thesis summary

In this thesis, we studied several applications of deep learning to physical systems. In Chapter 1,
we highlighted the potential for deep learning applications in the sciences, and discussed the specific
challenges posed by physical systems. Chapter 2 introduced key statistical problems studied in the
remainder of this thesis: system identification, optimal experimental design and data assimilation. We
first presented the basic formulations of these problems as quadratic least squares regressions. Then,
we explored how these problems may generalize to advanced learning models such as neural networks.

In Chapter 3, we addressed the problem of physical system identification through the prism of deep
learning, in the challenging situation of non-identically distributed observations. This framework is
common in the sciences, and it significantly adds complexity to the learning problem. By casting
it as a multi-task learning problem, we demonstrated how deep meta-learning can incorporate this
dimension into neural networks in a black-box fashion. Despite the generality of this approach, we
highlighted its limitations, both from a computational point of view and in terms of interpretability.
To overcome these two limitations, we proposed a more physically consistent model which, in contrast
to black-box modeling, uses the inherent structure of the problem to reduce complexity and increase
interpretability.

In Chapters 4 and 5, we examined the problem of active learning. Not only did we identify that this
problem raises questions of computational cost in general, but we also focused on controlled dynamic
systems, where this question becomes a critical constraint for applications on embedded systems. We
studied the experimental design problem through the prism of information theory and derived an
information-maximizing optimization problem to approximate this problem with limited computational
resources. We developed an online algorithm for linear dynamics in Chapter 4 and then extended this
algorithm to complex learning models, such as neural networks, in Chapter 5.

Finally, in Chapter 6, we explored the data assimilation problem, where the complexity of the underlying
physics and the size of the system pose a major computational challenge. By learning the physical signal
on a simulated dataset, we showed that deep learning algorithms could provide an approximate solution
at very low computational cost, which would considerably improve the performance of traditional
algorithms based on physical models.

7.2. Key messages

In the course of this thesis, we studied various statistical problems with a view to integrating a deep
learning model into them, along with some of the challenges that this integration poses. The various
approaches that we proposed have the common goal of leveraging the power of deep neural networks in
scientific applications while overcoming these challenges. In this section, we extract the key messages
that have emerged from our study.

Linear-Gaussian theory In Chapter 2, we presented the problems of system identification, exploration
and state estimation by introducing the simplest statistical models based on linear estimators: the
linear regression for system identification problem (2.2.16), the active linear regression problem (2.3.3)
for input design, and the quadratic interpolation problem (2.4.3) for state estimation. Because of
their simplicity, these different mathematical questions are well-posed and can be analyzed effectively.
Moreover, they can be solved efficiently with low computational cost. This well-established linear-
Gaussian framework underpins many applications in physical systems (Särkkä and Svensson, 2023),
with its simplicity compensated by its computational efficiency. We argue that this framework provides
a solid foundation for developing deep learning approaches, and that interpreting complex models as
perturbations of well-understood linear models offers valuable theoretical insights.
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Beyond linear models We demonstrated throughout our experimental results that neural networks
have powerful approximation capabilities for physical systems. However, their complex parameterization
deviates significantly from linearity. As a result, the closed-form expression of least-squares linear
models do not hold when integrating deep learning. In this thesis, we sought to incorporate deep
learning models while maintaining some computational advantages of linear models, by linearizing
the neural network parameterization. In Chapter 3, rather than using a black-box multi-task learning
meta-model, we expressed an affine relationship in the context parameter. In Chapters 4 and 5,
rather than expressing the information gain through a complex Bayesian expectation, we linearized
the parametric models, to derive a tractable expression for the Fisher information. In Chapter 6,
rather than representing the signal with a complex distribution, we sequentially approximated it by a
local quadratic expansion, ensuring a Gaussian prior distribution with the neural network defining its
parameters. As opposed to black-box deep learning, following this approach allowed us to maintain
a certain proximity to the original linear theory. For example, parameter adaptation in Chapter 3
is reduced to linear regression. In Chapters 4 and 5, the learning model is considered linear in its
parameters, hence allowing for classical information-theoretic derivations. In Chapter 6, although
parameterized by a neural network, the prior distribution is a Gaussian distribution, hence connecting
our approach to the 3D-Var and 4D-Var algorithms. Note that linearizing a model has always been a
standard method in science to analyze complex behaviors, and has underpinned countless applications,
from Gauss (1809) and the least squares method, to differential dynamic programming in nonlinear
optimal control for robotics (Tassa et al., 2014; Jallet et al., 2022), and 4D-Var in operational data
assimilation (Janisková and Lopez, 2013).

Practical applicability Throughout this thesis, we emphasized the practical applicability of our
methods under the physical constraints of real-world systems. By treating complex learning models as
locally linear Gaussian, we designed algorithms with lower computational costs compared to black-box
approaches. For example, our affine multi-task learning model in Chapter 3 allows tuning the model
with the ordinary least squares formula. In Chapters 4 and 5, our greedy approximation of the Fisher
information enabled an online exploration policy with limited computational resources. In Chapter 6,
modeling the state prior distribution as a Gaussian distribution ensured that the reconstruction
was the unique solution to a quadratic least-squares cost minimization problem. Importantly, these
contributions significantly differ from the black-box approaches by replacing non-convex optimization
at prediction time with quadratic problems with closed-form solutions, thereby saving considerable
computational resources and offering convergence guarantees. This computational gain is crucial in
fields like robotics, where gradient-based methods are often too slow for real-time application (see
e.g., the experiments on the wheeled robot Upkie in Chapter 3). Moreover, our methods may enhance
the interpretability of complex neural network algorithms: Chapter 3 interprets meta-learning models
in terms of physical parameters, Chapters 4 and 5 offer a simple mathematical interpretation of the
information gain, and Chapter 6 couples neural networks with 4D-Var for accurate, physically-plausible
reconstructions at low cost. Given the black-box nature of neural networks, interpretability is key for
the deployment of deep learning in scientific applications (Carter et al., 2023).

7.3. Limitations, open problems and perspectives

While our algorithms have demonstrated promising results in simulated physical environments, one of
the significant limitations of our work lies in their application to real-world systems. Implementing
these algorithms on more realistic systems would provide valuable insights into their practical utility
and robustness. For instance, conducting system identification experiments on the Upkie robot (Caron,
2023) would allow us to assess the performance and adaptability of our methods in a dynamic robotic
environment. Similarly, applying our data assimilation techniques to oceanographic and atmospheric
reanalyses would help evaluate their effectiveness in complex geophysical contexts, providing a clearer
picture of their scalability and reliability in real-world applications.
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Another limitation of our research is the lack of a comprehensive theoretical understanding of our
methods. Despite their empirical success, our algorithms rely on deep neural networks, and hence
lack rigorous convergence guarantees. Ensuring the stability of these algorithms is essential to prevent
potentially costly errors and enhance the reliability of the model. Such an understanding could build on
recent advances in the theory of deep learning for training convergence beyond the overparameterized
regime (Robin et al., 2022), and in online learning (Ghai et al., 2022) and meta-learning (Wang et al.,
2021).

In the field of deep learning applied to physical systems, several open problems remain critical for
advancing both machine learning and scientific discovery. One of the foremost challenges is the
interpretability of deep learning models, which are often treated as "black boxes" lacking transparency.
In scientific applications, it is essential to understand how models arrive at their predictions, as this
ensures reliability and trust in high-stakes domains such as climate modeling or robotics. A first
step towards addressing this challenge is provided in this thesis, where we propose interpretable deep
learning methods for system identification and data assimilation, demonstrating that models can be
constrained to respect physical laws while maintaining predictive accuracy. This line of research can
be further advanced by exploring frameworks like physics-informed neural networks, which embed
physical constraints into learning models (Raissi et al., 2019).

Another open problem is data efficiency. Physical systems often suffer from data scarcity, as collecting
data from real-world experiments can be expensive or impractical. Most deep learning methods rely
on large datasets to perform well, and this presents a significant hurdle in fields like oceanographic
and atmospheric reanalysis. One promising avenue for reducing the reliance on large datasets is the
incorporation of physical knowledge directly into the learning model. Physical signals often adhere to
well-known physical laws or constraints, such as conservation of energy or mass, which can be exploited
to guide the learning process. By constraining the model to search only among physically-plausible
signals, we can significantly reduce the sample complexity. This approach leverages the inherent
structure of the problem, thereby allowing the model to generalize more effectively from limited data.
In this thesis, we take initial steps in this direction through our work on interpretable meta-learning,
where we incorporate the physical structure of the system into the learning process. Though many
recent studies focus on integrating physical knowledge into neural networks (Liu et al., 2021; Richter-
Powell et al., 2022; Hansen et al., 2023), the full extent of how this approach can accelerate learning
processes in more complex tasks remains an open problem.

Moreover, an important challenge is the computational cost associated with processing large physical
signals, such as those involved in weather or climate models. As we have seen, the size of these
signals can be prohibitively large, leading to substantial resource demands when training machine
learning models. To mitigate this, it would be highly beneficial to develop methods for efficiently
compressing these signals while maintaining the integrity of the physical information. However, it
remains an open question whether this can be achieved by directly incorporating physical knowledge,
given that physical laws themselves are often costly to evaluate. A promising research direction involves
combining dynamical system theory with data-driven methods to compress the signals. Techniques
such as Dynamic Mode Decomposition (Tu, 2013) and the Koopman operator (Brunton et al., 2021)
allow for the decomposition of complex systems into meaningful modes, which can be leveraged for
efficient compression. Recent advances in Koopman operator learning (Lusch et al., 2018) and physical
signal compression using deep learning (Glaws et al., 2020) could offer new solutions for reducing
the computational burden while preserving essential dynamics. These methods hold potential for
large-scale applications, particularly in the context of data assimilation and forecasting for climate and
weather systems, where computational efficiency is paramount.

Lastly, the integration of generative models – particularly for uncertainty quantification, be it in state
estimation or in system identification – is a rapidly evolving field. One promising area is the exploration
of deep generative models, such as diffusion models (Ho et al., 2020), which have shown great potential
in image generation. These models target a distribution rather than a numerical output, offering a
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natural uncertainty quantification method. Recent works applied such generative models to scientific
problems in drug discovery (Corso et al., 2022), numerical weather forecast (Lam et al., 2022), and
data assimilation (Rozet and Louppe, 2023; Huang et al., 2024) with convincing results. However,
substantial work remains to be done towards end-to-end training of these architectures, reducing their
computational cost, and scaling them up to large real-world systems. Another interesting challenge in
using generative models for science is managing the perception-distortion trade-off (Blau and Michaeli,
2018). Unlike imaging applications, where the goal is to generate visually plausible signals, deep
learning models for scientific applications should prioritize minimal distortion to ensure accurate and
reliable results.

By addressing these challenges and, future research can aim to develop more robust, interpretable, and
efficient deep learning models for physical systems.
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Appendix of Chapter 2

Proof of Proposition 2.2. Let V := (v1, . . . , vN )> ∈ RN×n, E := (ξ1, . . . , ξN )> ∈ RN×n. Then
from Proposition 2.1

θ̂(y1:N )− θ? = (V >V )
−1
V >E (2..1)

Then,
E
[
(θ̂(y1:N )− θ?)(θ̂(y1:N )− θ?)>

]
= E

[
(V >V )

−1
V >EE>V (V >V )

−1]
= (V >V )

−1
V >E[EE>]V (V >V )

−1

= ρ2(V >V )
−1

(2..2)

Where the second equality comes from the non-randomness of the vi, and the third equality comes
from the independence of the ξi.
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Appendix of Chapter 3

3.A. Proofs

Lemma 3.1 Let v1, . . . , vN , and w1, . . . , wT ∈ Rr, and let κ ≤ r and v′1, . . . , v′N , and w′1, . . . , w′T ∈ Rκ

be two sets of vector of full rank, satisfying ∀i, t, wt>vi = w′
>
t v
′
i. Then there exist P,Q ∈ Rκ×r such

that w′t = Pwt and v′i = Qvi. Furthermore, QP> = Iκ.

Proof of Lemma 3.1. Denoting by V ∈ RN×r, V ′ ∈ RN×κ, W ∈ RT×r and W ′ ∈ RT×κ the matrix
representations of the vectors, the scalar equalities ∀i, t, wt>vi = w′

>
t v
′
i take the matrix form

VW> = V ′W ′
>
. (3.A.1)

Since V ′ is of full rank, the matrix V ′+ := (V ′V ′
>

)−1V ′
> ∈ Rκ×N is well defined and is a left inverse

of V ′. Multiplying (3.A.1) by V ′+ yields

W ′ = WP> with P := V ′+V ∈ Rκ×r. (3.A.2)

Similarly,
V ′ = V Q> with Q := W ′+W ∈ Rκ×r. (3.A.3)

We also obtain QP> = W ′+WP> = W ′+W ′ = Iκ

Proof of Proposition 3.1. Applying Lemma 3.1 to v′i := ν(zi), vi := v(zi), and wt := ωt, w′t := ϕt
yields the stated result.

The case where c, µ 6= 0 can be handled as follows. We augment ϕ and ν, and ω and v with an
additional dimension, with the last components of ϕ and ω equal to 1 and the last components of ν
and v equal to µ and c respectively. The augmented vectors satisfy the assumptions of Proposition 3.1
provided the augmented v′i and w′t span Rκ+1. The proposition then applies, and implies that the
physical parameters ϕt can be recovered with an affine transform. This case is tackled experimentally
in the capacitor experiment (Section 3.5.3), where µ 6= 0 a fortiori since the electrostatic field is
linearized around a nonzero value. The physical parameters are identified using an affine regression.

3.B. Experimental details

3.B.1 Architectures

All neural networks are trained with the ADAM optimizer Kingma and Ba (2015). For CoDA, we
set dξ = k, chosen according to the system learned. For all the baselines, the adaptation minimization
problem (3.2.5) is optimized with at least 10 gradient steps, until convergence.

113



3.B. Experimental details

For training, the number of inner gradient steps of MAML and ANIL is chosen to be 1, to reduce the
computational time. We have also experimented with larger numbers of inner gradient steps. This
improved the stability of training, but at the cost of greater training time.

3.B.2 Systems

We provide further details about the physical systems on which the experiments of Section ?? are
performed.

3.B.2.1 Point charges

The κ charges are placed at fixed locations in the plane at fixed location. The training inputs are
located in Ω = [−1, 1]× [0, 1] which is discretized into a 20× 20 grid and the ground truth potential
field is computed using Coulomb’s law.

The training data is generated by changing each charge’s value in {1, . . . , 5}κ, hence T = 5κ. We
have experimented on different settings with various numbers of charges, and various locations.
In Section 3.5.1, a dipolar configuration is investigated, where κ = 3, and one of the charges is far
away on the left and two other charges of opposite sign are located near ζ2 = 0. Gaussian noise of
size σ = 0.1 is added to the field values revealed to the learner in the test dataset.

The system is learned with a neural network of 4 hidden layers of width 16, with the last layer of
size r = κ.

For evaluation, the test data is generated with random charges drawn from a uniform distribution
in [1, . . . , 5]κ and the data points are drawn uniformly in Ω

3.B.2.2 Capacitor

The space is discretized into a 200× 300 grid. The training environments are generated with 10 values
of the physical context ϕ := (ϕ1, ϕ2) ∈ [0, 0.5]× [−0.5, 0.5] containing the angular and the positional
perturbation of the second plate, drawn uniformly. The ground truth electrostatic field is computed
with the Poisson equation solver of Zaman (2022). For evaluation, 5 new environments are drawn with
the same distribution.

The system is learned with a neural network of 4 hidden layers of width 64, with the last layer of
size r = κ+ 1 = 3.

3.B.2.3 Cartpole and arm

We have implemented the manipulator equations for the cartpole and the arm (or acrobot), fol-
lowing Tedrake (2022), and have added friction. The training data is generated by actuating the
robots with sinusoidal inputs, with for each environment 8 trajectories of 200 points and random
initial conditions and periods. At test time, the trajectories are generated with sinusoidal inputs for
evalutation, and with swing-up inputs for trajectory tracking.

Cartpole The pole’s length is set to 1, the varying physical parameters are the masses of the cart
and of the pole: ϕt ∈ {1, 2} × {0.2, 0.5}, so T = 4. For evalutation, the masses are drawn uniformly
around (2, 0.3), with an amplitude of (1, 0.2). The system is learned with a neural network of 3 hidden
layers of width 16, with the last layer of size r = κ+ 2 = 4.

Arm The arm’s length are set to 1, the varying physical parameters are the inertia and the mass of
the second arm: ϕt ∈ {0.25, 0.3, 0.4}×{0.9, 1.0, 1.3}, so T = 9. For evalutation, the inertial parameters
are drawn uniformly around (0.5, 1), with an amplitude of (0.2, 0.3). The system is learned with a
neural network of 4 hidden layers of width 64, with the last layer of size r = κ+ 2 = 4.
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3.B.2.4 Upkie

Information about the open-source robot Upkie can be found at https://github.com/tasts-robots/
upkie.

We trained the meta-learning algorithm on balancing trajectories of 1000 observations, with 10 different
values for Upkie’s torso, ranging from 0.5 to 10 kilograms. For evaluation, the mass is sampled in the
same interval.

The system is learned with a neural network of 4 hidden layers of width 64, with the last layer of
size r = κ+ 2 = 3.

3.B.3 Inverse dynamics control

Inverse dynamics control is a nonlinear control technique that aims at computing the control inputs
of a system given a target trajectory {q̄(s)} Spong et al. (2020). Using a model ˆID for the inverse
dynamics equation (3.4.2), the feedforward predicted control signal τ̂ = ˆID(q̄, ˙̄q, ¨̄q). These feedforward
control values can then be combined with a low gain feedback controller to ensure stability, as

τ = τ̂ +K(q̄ − q) +K ′( ˙̄q − q̇). (3.B.1)

For the cartpole, we used K = K ′ = 0.5. For the robot arm, we used K = K ′ = 1.

3.B.4 Adaptive control

In a time-varying dynamics scenario, CAMEL can be used for adaptive control and system identification.
Given a target trajectory, the task-agnostic component v of the model predictions can be computed
offline. In the control loop, the task-specific component ω is updated with the online least squares
formula. The control loop is summarized in Algorithm 3.1, where we have assumed c = 0 for simplicity.
The estimated inertial parameters are deduced from the task-specific weights with the identification
matrix (3.4.5).

Algorithm 3.1 Adaptive trajectory tracking
input trained feature map v(x), target trajectory s 7→ q̄s
Offline control
for timestep 0 ≤ s ≤ H − 1 do

compute z̄s = (q̄s, ˙̄qs, ¨̄qs)
compute features v̄s := v(z̄s)

end for
Control loop
Initialize M0 = Ir, ω0 = (0, . . . , 0)
for time step 1 ≤ s ≤ H do

compute τ̂s = ω>s v̄s
compute es = qs − q̄s
play τs := τ̂s +Kes
observe qs+1, q̇s+1

compute vs := v(xs)

update Ms+1 = Ms − Msvs(Msvs)
>

1+v>s Msvs

update ωs+1 = ωs − (vs
>ωs − us)Ms+1vs

end for
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3.B. Experimental details

3.B.5 Additional numerical results

We provide details concerning Table 3.2.

Computational time For the computational times of Table 3.2, we arbitrarily chose the shortest
time as the time unit, for a clearer comparison among the baselines. The computational times were
measured and averaged over each experiment, with equal numbers of batch sizes and gradient steps
across the different architectures. For training, the time was divided by the number of gradient steps.

Table 3.1. Adaptation performances with standard deviations.

System Charges, 30 trials Capacitor, 5 trials
3-shot 10-shot 5-shot 40-shot

MAML 4.1e-0 ± 2e-0 1.6e-1 ± 5e-2 N/A N/A
ANIL 3.5e0 ± 5e-1 9.2e-4 ± 5e-4 4.4e-2 ± 2e-2 3.6e-2± 1e-2
CoDA 1.0e-1 ± 9e-2 8.2e-2 ± 3e-2 4.7e-2 ± 5e-5 2.6e-2± 1e-2
CAMEL 2.0e-4 ± 1e-4 1.0e-4 ± 5e-5 3.6e-2 ± 2e-2 2.6e-2 ± 1e-2

System ε-Capacitor, ε = 0.1, 5 trials
3-shot 30-shot

MAML N/A N/A
ANIL 1.1e-3 ± 5e-5 1.1e-3 ± 5e-5
CoDA 1.2e-3 ± 5e-4 1.0e-3 ± 5e-4
CAMEL 4.2e-4 ± 1e-4 1.9e-4 ± 2e-5

System Cartpole, 50 trials Arm, 50 trials
50-shot 100-shot 50-shot 100-shot

MAML 4.3e0 ± 7e-1 3.5e0 ± 6e-1 1.0e0 ± 1e-1 8.1e-1 ± 5e-2
ANIL 3.8e-1 ± 1e-1 2.5e-2 ± 9e-2 8.5e-1 ± 1e-1 7.5e-1 ± 4e-2
CoDA 3.8e-1 ± 9e-3 8.1e-1 ± 1e-1 9.5e-1 ± 9e-2 9.3e-1 ± 6e-2
CAMEL 4.8e-2 ± 1e-2 3.1e-3 ± 5e-4 3.1e-1 ± 5e-2 2.4e-1 ± 1e-2

System Upkie, 15 trials
MAML 1.5e-2 ± 7e-3
ANIL 1.9e-2 ± 6e-3
CoDA 2.1e-2 ± 3e-3
CAMEL 8.2e-3 ± 5e-3
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Figure 3.1. 5-shot adaptation for the 4 point charge system. Top. The four charges are positive, as in
the training meta-dataset. Bottom Two of the four charges are negative.
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Figure 3.2. Upkie torque prediction, 100-shot adaptation.
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Appendix of Chapter 4

Proof of Proposition 4.2. Using the expression (4.2.7) for θ̂(z0:t), we may compute

θ̂(z0:t)
>

= M−1
t

t−1∑
s=0

zsx
>
s+1

= M−1
t

t−1∑
s=0

zs(θ?zs + ηs)
>

= M−1
t

t−1∑
s=0

zsz
>
s θ
>
? +M−1

t

t−1∑
s=0

zsη
>
s

= θ>? +M−1
t

t−1∑
s=0

zsη
>
s .

(4..2)

Proof of Proposition 4.3. We saw that the log-likelihood of a trajectory z0:T is

log p(z0:T |θ) = − 1

2σ2

T−1∑
t=0

∥∥zt>θ − xt+1

∥∥2

2
− T log(

√
2πσ2) (4..3)

We note that

‖Axt +But − xt+1‖22 =

d∑
i=1

(
z>t θ

(i) − x(i)
t+1

)2

(4..4)

is a sum of d squares, each term corresponding to one row θ(i) of θ. Therefore, there are no cross
products between the θ(i) in (4..5). Hence, ∂2 log p(z0:T |θ)/∂θ2 is a block-diagonal matrix by seeing θ
as a vector where the rows are concatenated. The i-th block matrix equals

∂2 log p(z0:T |θ)
∂θ(i)2 = − 1

2σ2

T−1∑
t=0

ztzt
>. (4..5)

The result of the proposition follows.

Proof of Proposition 4.4. From the matrix determinant lemma,

det
(
Mt + zz>

)
= detMt ×

(
1 + z>Mt

−1z
)
. (4..6)

By taking the logarithm,

log det
(
Mt + zz>

)
= 1 + log detMt + z>Mt

−1z. (4..7)
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Now recall that z = (Atxt +Btu, 0), and let P := (M−1
t )1≤i,j≤d denote the first diagonal submatrix

of M−1
t of size d× d. Then

z>Mt
−1z = x>t A

>
t PAtxt + 2x>t A

>
t PBtu+ u>B>t PBtu (4..8)

It follows that
log det

(
Mt + zz>

)
= u>Qq − 2b>u (4..9)

with

Q = B>t PBt, and b = −B>t PAtxt. (4..10)
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A. Key definitions and approximations

A. Key definitions and approximations

We summarize step by step the approximations and the definitions pertaining FLEX from linear models
to nonlinear models.

Table 5.2. Recap of our the important quantities we defined and their approximations for linear and
nonlinear models.

Linear model Nonlinear model
Aassumption f(z, θ) = V (z)× θ + c(z) as in (5.3.1) f(z, θ) differentiable
Learning online least squares online gradient descent

= maximum likelihood estimator ' maximum likelihood estimator
θt+1 = θt − Γt∇`t(θt) as in (5.3.11b) θt+1 = θt − γt∇`t(θt) as in (5.5.6)

Feature map V (z) as in Definition 5.1 V (z) :=
∂f

∂θ
(z, θ?) as in (5.5.2)
θ? ' θt

Vt := V (zt) as in Definition 5.1 Vt :=
∂f

∂θ
(zt, θt) as in (5.5.3)

v := V (k) as in Lemma 5.1

Gram matrix Mt :=
t−1∑
s=0

Vs
>Vs as in (5.3.7)

Information matrix I = Mt as in (5.3.9) I 'Mt as in 5.5.2
D-optimal information gain G(z) := log det(Mt + V (z)

>
V (z)) as in (5.4.3)

Rank-one approximation G(z) ' log detMt + v>(z)M−1
t v(z) as in (5.4.4)

Matrices M := Mt ,
D := ∂v/∂x
B := dt ∂f/∂u

Q := B>D>M−1DB
b := −B>D>M−1v

as in (5.5.3)

Algorithm 5.2 Fast Linearized EXploration (FLEX) for nonlinear models

input nonlinear model f , horizon T , time step dt, first estimate θ0

output parameter estimate θT
for 0 ≤ t ≤ T − 1 do

compute Vt :=
∂f

∂θ
(zt, θt) and as in (5.5.3) and (5.5.4)

compute Qt, bt with Vt as in (5.4.6)
choose ut ∈ argmax

u>u≤β2

u>Qtu− 2b>t u (Proposition 5.2)

observe xt+1 = xt + dt f(xt, ut) + ηt
compute `t(θ) = 1

2‖f(xt, ut, θ)− (xt+1 − xt)/dt‖22
update θt+1 = θt − γ∇`t(θt) as in (5.5.6)

end for

B. Exploration in high-dimensional environments

We propose an additional experiment showing the behaviour of our algorithm in high dimension. We
will add this experiment to our submission.
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Table 5.3. Performance of algorithms FLEX and Random for the exploration of the n coupled
pendulums.

n 2 5 10 20 50
d 4 10 20 40 100
sample complexity, Random 20 100 200 500 > 1000
compute, Random 1 2 6 60 250
sample complexity, FLEX 10 50 100 200 500
compute, FLEX 3 5 10 80 350

The nonlinear system we consider is a chain of n coupled damped pendulums, with unknown friction.
Each pendulum is coupled with its two nearest neighbors. Only the first pendulum is actuated an the
motion of the rest of the pendululms is due to the successive coupling (Bitar et al., 2017). Exploration
of the system consists in finding the friction forces on the pendulums.

We believe that this system is illustrative for the typical setup of system identification. In robotics
for example, the experiment seeks to measure the parameters of a humanoid constituted of large
number of joints. Furthermore, the system we propose poses both challenges of large dimension and
underactuation. Indeed, the dimension of the state space is d(n) = 2n, and only one of the n pendulums
is actuated, the motion being propagated from neighbor to neighbor. This experiment allows us to
monitor both the sample efficiency and the computational cost of FLEX in a challenging setting of
large dimension.

Setup The system is modeled with a linear model with unknown friction coefficients θ ∈ Rn from
observations xt ∈ R2n. We define the sample complexity as the number of samples required to
obtain a 10−2 parameter error. For different values of n, we measure the sample complexity and the
computational time of FLEX and Random.

Results We provide our resultsin Table 5.3. These results capture the behaviour of the algorithm
when the dimension d grows. Our algorithm FLEX seems to reach a linear sample complexity with
respect to d, with reasonable computational time, whereas random exploration fails to explore and
yields super-linear sample complexity. Our results suggest that despite larger computational cost,
FLEX remains sample efficient and competitive in high-dimensional environments.

C. Experimental details

C.1 Exploration benchmark

C.1.1 Additional results

The temporal coherence of the inputs generated by FLEX is illustrated by Figure 5.3. The spectral
density shows that the energy is peaked on a frequency, hence implying that there is a temporal
structure exciting the cartole near resonance, and thereby yielding informative trajectories.
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Figure 5.3. Spectral density of the inputs generated by FLEX in the cartpole environment.

C.1.2 Environments

We provide additional details on the environments and the learning models used. We denote the
translation variables by qx and qy and the angle variables by qφ.

Environment 1 (Pendulum, d = 2, k = 1). The dynamics are given by (5.2.5).

Environment 2 (Quadrotor, d = 6, k = 2). The planar quadrotor with nonlinear friction follows the
following equations (Zhang et al., 2014)

ϕ1q̈x = −(u1 + u2) sin qφ − αqx|q̇x|q̇x
ϕ1q̈y = (u1 + u2) cos qφ − αqy|q̇y|q̇y − ϕ2

ϕ3q̈φ = ρ(u1 − u2)

(C.1)

with ϕ1 the mass, ϕ2 the weight, ϕ3 the moment of inertia, ρ the distance to the base and α a friction
coefficient.

Environment 3 (Cartpole, d = 4, k = 1). We implement the dynamics provided in (Barto et al., 1983).

Environment 4 (Robot arm / double pendulum, d = 6, k = 2). Equations available in (Chen,
2008).[d = 4, k = 2]

C.1.3 Baselines

The random baseline returns ut ∼ β√
k
U([−1, 1]β). The uniform policy maximizes the uniformity

objective by gradient descent, with 100 gradient steps at each time step. The periodic policy returns
inputs of the for ut = β sin(ω0t), with ω0 an eigenmode of the system.

C.1.4 Models

We use the following learning models in Section 5.6.1. of width 8 with one hidden layer and tanh
nonlinearity trained using ADAM optimizer (Kingma and Ba, 2015) with a batch size of 100.

Pendulum We use the linear model of Example 5.2.1 and learn it by ordinary least squares.

Quadrotor We learn the friction force with a neural net, and a learning rate of γ = 0.02.

Cartpole We parametrize f(z, θ) = aθ(ξ)+u×bθ(ξ) with the observations ξ = (qx, q̇x, cos qφ, sin qφ, q̇φ),
and aθ and bθ given by a neural network, trained with a learning rate of γ = 0.1.

Arm We use a neural network to learn f?(., u = 0) as a function of ξ = (cos qφ1
, sin qφ1

, q̇φ1
, cos qφ2

, sin qφ2
, q̇φ2

)
and a learning rate of γ = 0.05.
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C.2 Tracking of time-varying dynamics

The state of the spaceship in the plane is denoted x = (qx q̇x qy q̇y)
>. The center of the star has

time-varying coordinates (
κx(t), κy(t)

)
=
(

cos(2πt/T ), sin(2πt/T )
)
. (C.2)

and the dynamics take the form

d

dt

(
q̇x
q̇y

)
= − 1

1 + 1
ρ2

(
(qx − κx)2 + (qy − κy)2

) q

‖q‖2
(C.3)

The agents know the dynamics down to the parameters κx, κy and ρ, which they learn by online
gradient descent, with optimier ADAM and a learning rate of γ = 0.01.

C.3 From exploration to exploitation

10−1
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101

exploration

0 25 50
t

1.2

1.3

1.4
×104 exploitation

pendulum

100

200
exploration

0 500
t

3

4
×104 exploitation

cartpole

random

FLEX

Figure 5.4. Performance of our FLEX and random exploration evaluated on downstream model-based
control tasks in pendulum and carptole.

We add noise in the dynamics: σ = 0.001 for the pendulum and σ = 0.05 for the cartpole.

We use a linear model for the pendulum, and a neural network model with the same architecture as
those of Section C.1 for the cartpole. The dynamics are learned as a function of cos qφ and sin qφ, and
qx and q̇x for the cartpole.

Since we implemented our models with Pytorch (Paszke et al., 2017), we used we use the mpc package
and the iLQR algorithm for exploitation (Amos et al., 2018). The quadratic costs are

C = 100(1− cos qφ)2 + 0.1 sin2 qφ + 0.1q̇2
φ + 0.001u2 (C.4)

for the pendulum and

C = 100q2
x + 100(1− cos qφ)2 + 0.1 sin2 q2

φ + 0.1q̇2
x + 0.1q̇φ + 0.001u2 (C.5)

for the cartpole. When comparing the cost values to competitors, only the order of magnitude matters
since the control algorithm used for exploitation are different from an experiments to another.
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We measured the computational time on a laptop and averaged it over 100 runs for FLEX and
the random policy, then compared with the values of (Schultheis et al., 2020) and by setting the
commputational time of the random policy to 1. Here again, only the orders of magnitude matter.

D. Proofs

D.1 Proof of Proposition 5.1

Proof. The data-generating distribution knowing the parameter θ can be computed using the probability
chain rule:

p(y|θ) = (
1√

2πσ2
)t exp

(
− 1

2σ2

t−1∑
s=0

‖V (zs)× θ − xs+1‖22

)
. (D.1)

which yields

log p(y|θ) = − 1

2σ2

t−1∑
s=0

‖V (zt)× θ − xt+1‖22 − t log(
√

2πσ2)

= − 1

2σ2

d∑
i=1

t−1∑
s=0

(
θ>v(i)(zt)− x(i)

t+1

)2

2
− t log(

√
2πσ2).

(D.2)

Differentiating twice yields and taking the opposite yields

I(y, θ) =
1

σ2

d∑
i=1

t−1∑
s=0

v(i)(zt)v
(i)(zt)

>

=
1

σ2

t−1∑
s=0

V (zs)
>
V (zs)

=
1

σ2
Mt.

(D.3)

D.2 Proof of Proposition 5.2

Proof. At first order in the neighborhood of x̄ := xt + dt f(xt, 0),

v(x) = v(x̄) +
∂v

∂x
(x̄)× (x− x̄) +O

(
‖x− x̄‖2

)
, (D.4)

Moreover, the first-order expansion of x(u) near u = 0 is

x(u) = x̄+ dtBu+ o (dt) (D.5)

where u is of order β. Substituting expansion (D.5) into expansion (D.4) yields the first-order expansion
of v(z(u)). Omitting the additive constants, we obtain the stated result.

D.3 Proof of Proposition 5.3

Proof. See Chapter 4. Since exploration aims at producing trajectories of large amplitude, we focus
on inputs with maximal norm and assume an equality constraint in the optimization problem. The
strict inequality can be handled readily with unconstrained minimization. Let us denote by u? a
minimizer of (5.4.5), {αi} the eigenvalues of Q, and u

(i)
? and bi the coordinates of u? and b in a

corresponding orthonormal basis. By the Lagrange multiplier theorem, there exists a nonzero scalar µ
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such that Qu? − b = −µu?, where µ can be scaled such that Q+ µIm is nonsingular. The inversion of
the optimal condition and the expansion of the equality constraint yield

u
(i)
? = bi/(αi + µ) (D.6a)∑

i

bi
2

(αi + µ)2
= β2. (D.6b)

The minimizer u? is determined by solving (D.6b) for µ.
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