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Abstract
Machine learning methods can be a valuable aid
in the scientific process, but they need to face chal-
lenging settings where data come from inhomo-
geneous experimental conditions. Recent meta-
learning methods have made significant progress
in multi-task learning, but they rely on black-
box neural networks and suffer from a lack of
interpretability. We introduce Task-Linear Deep
Representation, or TDLR, a new meta-learning
architecture capable of learning efficiently from
multiple environments by incorporating the lin-
ear structure observed in many problems. Unlike
other approaches, we prove that TLDR is able
to learn the physical parameters of the system,
hence enhancing interpretability. We show that
our method performs competitively by comparing
it to state-of-the-art algorithms on two systems
derived from scientific modeling.

1. Introduction
The learning of physical systems is an essential application
of artificial intelligence that can unlock significant tech-
nological and social progress. Physical systems are inher-
ently complex, making them difficult to learn (Karniadakis
et al., 2021). One particularly challenging and common sce-
nario is multi-task learning, where observations of physical
systems are collected under inhomogeneous experimental
conditions (Caruana, 1997). In such cases, the scarcity of
training data necessitates the development of robust learn-
ing algorithms that can efficiently handle environmental
changes and make use of all available data.

Related work Multi-task learning has recently been ad-
dressed from a perspective of meta-learning (Hospedales
et al., 2021). Building on the power of deep learning,
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gradient-based meta-learning methods such as the well-
known MAML algorithm (Finn et al., 2017) and its ANIL
variant (Raghu et al., 2020) achieve remarkable perfor-
mances. Lately, there has been a growing interest in adapt-
ing these methods to architectures specifically designed for
physical systems. Recent work has focused on the gen-
eralization and prediction of dynamical systems, such as
DyAD (Wang et al., 2022), LEADS (Yin et al., 2021) and
CoDA (Kirchmeyer et al., 2022).

These approaches model data with deep neural networks
and hence benefit from high expressivity. However, deep
neural networks also suffer from a lack of interpretability,
which can be a problem when dealing with physical sys-
tems (Karniadakis et al., 2021). Typically, neural network
parameters have no physical meaning, and the mathematical
structure that many problems present is often not exploited.
A common strong property that is common in physics is
the linearity of equations with respect to certain parameters.
Building on this observation, we introduce a learning archi-
tecture incorporating this structure, called Task-linear Deep
Representation (TLDR).

Contributions We propose a formalization of gradient-
based meta-learning algorithms and use it to compare the
learning architectures of the main existing models. We in-
troduce TLDR, a meta-learning architecture designed to
leverage the linear structure of the system across learning
environments. Our method learns and generalizes efficiently,
and with low computational cost. We prove that it is able
to identify the true system parameters with minimal super-
vision, unlike other approaches. We show experimentally
that TLDR outperforms other state-of-the-art meta-learning
algorithms on two physical systems. Furthermore, we show
theoretically and experimentally that TLDR is able to re-
cover the physical parameters of the system, bringing inter-
pretability to the learning algorithm.

2. Gradient-based meta-learning
In this section, we describe the generic structure of gradient-
based meta-learning algorithms. The learner is provided
with a meta-dataset D :=

⋃T
t=1Dt consisting of T datasets

from different tasks (or environments). We will assume
for simplicity a classical supervised regression setting
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Algorithm 1 Gradient-based meta-training
input datasets D1, . . . DT , parametric-model f(x; θ, w),
initial meta-parameters π, learning rate η, parametrizer φ
output learned meta-parameters π̄
while not converged do

for tasks 1 ≤ t ≤ T do
instantiate parameters (θt, wt) = φ(π,Dt)
instantiate model ft(x;π) = f(x; θt, wt)
compute the task-specific loss Lt[ft(x;π)] (2.1)

end for

compute the meta-loss L(π) = 1
T

T∑
t=1

Lt[ft(x;π)]

update π ← π − η∇L(x;π)
end while

where Dt := {xi,t, yi,t}1≤i≤Nt . The goal is to learn a pre-
dictor x 7→ y from D that is robust to task changes, in the
sense that when presented with data from a new task, it can
learn the underlying function from a few shots (Hospedales
et al., 2021).

Architecture In gradient-based meta-learning a paramet-
ric model such as a neural network f(x; θ, w) is used
for learning and adaptation to the environments. The
parametrization consists in a task-agnostic component θ
and a task-specific component w. In this framework, a
meta-learning algorithm is characterized by a task parameter
map φ : (π,Dt) 7→ (θ, w) specifying how the task-specific
parameters of f are instantiated from the meta-parameters π
and the dataset of task t. We give examples of this formalism
for recent architectures in Table 1.

Training At training time, for each task t, the meta-learner
instantiates a task-specific version of the model from the
task dataset Dt, defining ft(x;π) = f(x;φ(π,Dt)). The
error on dataset Dt is measured by the task-specific loss

Lt[f ] :=

Nt∑
i=1

1

2
‖f(xi,t)− yi,t‖2. (2.1)

The parameters are trained to minimize the meta-loss de-
fined as the aggregation of the Lt:

L(π) :=
1

T

T∑
t=1

Lt[ft(x;π)]. (2.2)

The training process is summarized in Algorithm 1.

Adaptation At test time, the learner is presented a new
dataset DT+1 consisting of few samples(or shots). Us-
ing this adaptation data and the learned meta-parameters,
the learner instantiates fT+1(x; θ̄, w̄) with (θ̄, w̄) =
φ(π̄, DT+1). The task-agnostic component θ̄ is frozen, and

the task-specific component is tuned from the initial value w̄
by minimizing the prediction error on the adaptation dataset:

min
w

LT+1(θ̄, w;DT+1). (2.3)

In all the above approaches, this minimization is performed
by gradient descent. The meta-learning algorithm is success-
ful if the adapted model has good prediction performance
on new test samples of task T + 1.

3. Task-linear meta-learning
Many physical systems can be modeled mathematically as
a sum of various functions representing different physical
contributions, with scalar coefficients that may vary across
experiments. We postulate that a task is represented by a
vector of system parameter, or weight w ∈ Rr, in which the
target function is linear

f?(x;w) := w>v?(x), (3.1)

with v?(x) ∈ Rr. Hence the observations of the dataset
have the form yi,t = f?(xi,t;w

?
t ).

Although this structural assumption may not be valid for all
physical systems, it does allow to model a broad class of
problems as the following examples illustrate.

Example 1 (Electrostatic field). An electromagnetic field
is typically the sum of several contributions (e.g. an am-
bient field and an object-specific field), which are neither
known nor controlled by the experimenter and hence vary
from an experimenter to another. However, their mathemati-
cal expressions across tasks are known to have a common
structure, up to some linear coefficients. For instance, we
consider the potential of an electrostatic dipole moment in
the presence of an ambient field:

f?(x;w) =
px1

2πε0(x21 + x22)3/2
− Ux1, (3.2)

This physical system has the form of (3.1)
with the system parameters w = (U, p) and fea-
tures v(x) =

(
x1, x1/(2π(x21 + x22)3/2)

)
. The correspond-

ing electric field is given by E(x) = −∇f?(x) ∈ R2 (Haus
& Melcher, 1989) .

Example 2 (Robot inverse dynamics). The Euler-Lagrange
formulation for the dynamics of a robot has the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = Bu ∈ Rd, (3.3)

where q are the generalized coordinates, M is the mass ma-
trix,C captures the Coriolis forces, g(q) is the gravity vector
and the matrix B maps the input u into generalized forces.
It can be shown that equation (3.3) is linear with respect to
the physical parameters (Nguyen-Tuong & Peters, 2010),
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Table 1. Structure several meta-learning models. Here v and u denote parametric models, such as neural networks.

Meta-algorithm MAML LEADS CoDA TLDR
structure of the additive in additive in additive in multiplicative in
parametrization parameter space function space parameter space function space
meta-parameters π θ (θ, w1, . . . , wT ) (θ,Θ, ξ1, . . . , ξT ) (θ, w1, . . . , wT )
φ(π,Dt) (θ,−η∇L(θ;Dt)) (θ, wt) (θ,Θξt) (θ, wt)

f(x; θ, w) v(x, θ + w) v(x, θ) + u(x;w) v(x; θ + Θξ) w>v(x, θ)

and hence takes the form of (3.1). A simple, yet illustrative
physical system of this form is the actuated pendulum:

m`2q̈ +mg sin q = u. (3.4)

If several pendulums are observed in the training data,
the system parameters w := (m`2,mg) of dimen-
sion r = 2 may vary across the datasets, but the ob-
servations will still be linear functions of the same fea-
ture map v(x) = (q̈, sin q). The goal is to learn both the
task-agnostic and the task-specific components from ob-
servations of two different environments y = w>v(x)

and y′ = w′
>
v(x).

To learn a physical system of the form (3.1) across various
environments, we propose the following Task-Linear Deep
Representation architecture.
Definition 1 (TLDR architecture). The output is modeled
as a linear function of task-specific weights wt ∈ Rr with a
task-agnostic feature map v(x; θ):

f(x; θ, w) = w>v(x; θ) ∈ R. (3.5)

The task-linear function (3.1) and the corresponding model
of Definition 1 can be generalized to task-affine func-
tions f(x;w) = w>v(x) + c(x) by increasing the dimen-
sion and setting the last component of w to 1. It can also be
generalized to multivariate observations y ∈ Rm with the
parametrization f(x;w) = V (x)× w, and V (x) ∈ Rm×r.

The function v(x; θ) is an arbitrary parametric model, which
can be as complex as a deep neural network. It is meant to
capture the task-agnostic features of the system. Our archi-
tecture makes a clear distinction between the task-agnostic
representation v and the task-specific weights w. In this
work, we assume that the dimension of the features r = r?
is known in advance. In practice, this may not be true but r?
can be readily inferred during the training algorithm.

Meta-training The meta-parameters of our architecture
are jointly trained by gradient descent as in Algorithm 1.

Adaptation The linear structure of our model allows us to
solve (2.3) by ordinary least squares. Other meta-learning
approaches, in contrast, require a number of gradient descent
adaptation steps.

4. Parameter identification with TLDR
In this section, we study the interpretability of TLDR, i.e.
the link between the trained parameters and the ground truth.

The first question is whether the trained v̄ and w̄t con-
verge to the ground truth v? and w?

t . Unfortunately, this
is not the case because the product w>v and hence the
loss function are invariant to matrix multiplication of the
two factors v and w (Fu et al., 2018). For example, the
feature-parameter pair {v, w} and v′ = P−1v, w′ = P>w
for some P ∈ GLr(R) produce the same output y = w>v.
However, we show in the following lemma that if the dot
product equality w>v = w′

>
v′ holds for a spanning set

of Rr, then there exists a linear transform that maps the two
families of vectors.

Lemma 1. Assume that T,N > r. If W,W ′ ∈ RT×r

and V, V ′ ∈ RT×r satisfy WV > = W ′V ′
> in RT×N ,

andW and V are of full rank, then there exists P ∈ GLr(R)
such that V = V ′P> and W = W ′P−1.

Assuming fixed training points {xi,t} = {xi} across
the task datasets, and applying Lemma 1 to the train-
ing features V :=

(
v(x1; θ), . . . , v(xN ; θ)

)
and parame-

tersW := (w1, . . . , wT ), and V ′ andW ′ the corresponding
ground truths, we obtain the following result.

Proposition 1. In the limit of vanishing training
loss L(π) = 0, the meta-parameters recover the feature
map and the parameters of the true system up to a linear
transform.

It follows from Proposition 1 that we can identify both the
task-agnostic and task-specific components of the system
with little additional supervision information: the true solu-
tions are known up to a matrix P ∈ GLr(R). For example,
if a number of s ≥ r training parameters w?

t are known, we
can solve the ordinary least squares regression

min
P∈Rr×r

1

2

s∑
t=1

∥∥P>w̄t − w?
t

∥∥2 (4.1)

and the minimizer P̂ yields the estimates ŵt := P̂>w̄t for
the training parameters. We can then estimate v? accord-
ing to Proposition 1 with v̂(x) = P̂−1v̄(x). At test time,
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Figure 1. Two-shot adaptation on two out-of-domain dipole envi-
ronments. The adaptation points are represented by the × symbols.
The vector field is derived from the learned potential field.

a new system parameter w? can be identified by minimiz-
ing ‖w>v̂(x)− y‖2 in w over the adaptation set.

5. Experimentation on physical systems
We test the performance of TLDR on two physical systems:
an electric dipole, as described in Example 1 and the inverse
dynamics of an acrobot (or robot arm). The dipolar potentiel
field is learned as a function of the position in a plane: d = 2.
For the robot arm, the input space is of dimension d = 8,
with x containing the sine and cosine of the two angles of
the arm, and their first- and second-order time derivatives,
and the output is the torque applied to the second joint. The
equations of motion can be found in (Tedrake, 2022).

Baselines We compare TLDR with two state-of-the-art
gradient-based meta-learning algorithms: MAML and
CoDA (Kirchmeyer et al., 2022), whose architecture we
have adapted to static regression. We implement MAML
with the learn2learn Python package (Arnold et al., 2020)
and CoDA using hypnettorch (von Oswald et al., 2020).

Evaluation The algorithms are evaluated with prediction
error on several out-of-domain (i.e. new tasks) test datasets,
from which a few labeled examples are provided for adapta-
tion. For TLDR, we also define a feature identification error
as ‖v̂(.; θ)− v?‖L2 and a task parameter identification error
as ‖w?

t − ŵt‖2.

Experimental setup The systems are learned with a fully
connected neural network f of 2 hidden layers of width
8 and tanh nonlinearity, and trained with the Adam opti-
mizer (Kingma & Ba, 2015) with 5000 gradient steps. The
data points {xi} are located a uniform grid of size 400. For
training, T = 9 for the dipole and T = 8 for the robot arm.
Our code is available at https://anonymous.4open.
science/r/meta-learning-1370/.

Results The test error is plotted as a function of the num-
ber of shots in Figure 2. The task-linear meta-model is able
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Figure 2. Minimal, median and maximal few-shot adaptation error
across test environments as a function of the number of shots. For
CoDA and MAML, adaptation is performed with 50 gradient steps.
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Figure 3. System identification across the training steps.

to adapt well after only r =2 or 3 shots, whereas the other
approaches require more data. The electric fields obtained
with MAML and TLDR after two-shot adaptation on two
out-of-domain environments are shown on Figure 5. In this
few-shot scenario, TLDR adapts accurately to the test en-
vironments while MALM has difficulty learning the new
fields. Figure 3 shows the test error in the feature space and
parameter space (averaged over the training tasks), obtained
as in Section 4 with s = r. The curves show that TLDR
effectively identifies the task-agnostic and task-specific com-
ponents of the physical systems separately, with vanishing
error.

6. Conclusion
We have proposed TLDR, a meta-learning architecture that
leverages the task-linear structure of physical systems to
learn and adapt efficiently from multiple environments.
Unlike other black-box approaches, TLDR enables inter-
pretability of the learned features and parameters.

Although we showed the interpretability of TLDR, the
knowledge of multiple training parameters is a restrictive as-
sumption and we would like to investigate a setting in which
parameter recovery relies on more realistic prior knowledge.
Interesting future research directions include learning from
trajectories and forecasting dynamical systems, and vali-
dating the performance of TLDR for robotic systems on
downstream control tasks using inverse dynamics control.

https://anonymous.4open.science/r/meta-learning-1370/
https://anonymous.4open.science/r/meta-learning-1370/
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Broader impact
Although our method is a first step towards interpretable
learning of physical systems, the theoretical result we pro-
vide is only valid in the vanishing training loss limit. Futher-
more, the interpreted parameters can only be recovered
after a supervised learning (i.e. regression) step, where
the output is all the more accurate as supervision increases.
Therefore, one should be careful when interepreting the out-
put of TDLR as physical parameters and thorough checks
should be performed before using them as inputs to some
experiment downstream in the pipeline.
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