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Abstract

Let T > 0. Which potential energy functions U yield T -isochronism for the one-dimensional physical
system ẍ = −U ′(x) ? Under mild assumptions, one can check that the only symmetric potentials
satisfying this property are harmonic : U(x) ∝ x2. We propose to recover this result experimentally by
training a neural differential equation [1] to satisfy global T -periodicity.

1 Isochronism problem
Isochronism is the property for a physical system of having a period that is independent of the motion’s

amplitude. Such a property allows one to measure time reliably, be it by the means of a pendulum or of a
quartz crystal [2]. Consider a one-dimensional physical system

ẍ = −U ′(x), (1)

where we chose a unitary mass without loss of generality. It is well known that the quadratic potential
U(x) = 1

2ωx
2 yields a harmonic, isochronic motion of period T = 2π/ω. We are interested in the following

question : given a fixed time T > 0, are there other such symmetric functions U ?
In mathematical terms, for which symmetric functions U do the dynamics (1) yield T -periodicity X(T ) =

X(0) for all the trajectories X = (x, ẋ)> i.e. for all initial conditions X(0) ? It turns out that under mild
assumptions, the harmonic potential is the only solution [2] :

U(x) ∝ x2. (2)

We first introduce neural differential equations (neural ODEs), then apply them to tackle our problem
experimentally. Finally, we present a mathematical proof of the result.

2 Neural differential equations
Residual neural nets learn residual functions of the activations: xt+1 = xt + fΘ(xt). In the continuum

limit, if the weights are assumed to be constant along the depth of the network t, the activations are solutions
of the autonomous system [1]:

dx

dt
= fΘ(x). (3)

Therefore, the values of the activations (xt) are trajectories of the flow fΘ along depth t. Then, minimizing a
loss function of the trajectories and the weights L[xΘ,Θ] amounts to optimizing the weights of a parametric
differential equation (3). This is allowed by sensitivity analysis of differential equations, typically by the
means of automatic differentiation or by the adjoint method [3]. We give a representation of neural ODEs
in figure 2.
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Figure 1: ResNet architecture. The layer fΘ learns the residual of the activations.
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Figure 2: Training a neural ODE. Backpropagating the gradient through the integration step is performed
by automatic differentiation through the solver or the adjoint method [1].

3 Learning the flow
As stated before, neural ODEs allow us to train the flow of an ODE by imposing a loss function on its

trajectory. We hence parametrize the dynamics (1) in the following way

ẍ = fΘ(x), (4)

where the neural network fΘ(x) approximates the force field f(x) = −U ′(x). Our objective is to yield
T -periodic trajectories, so we want to optimize

min
Θ
‖XΘ(T )−XΘ(0)‖2 . (5)

Experimental setup In our experiment, we trained our network to the objective (5) on a dataset of
N = 100 random points of the phase portrait Xi ∼ N (0, 1), 1 ≤ i ≤ N and with T = 2π. We take for
fΘ a 2-layer fully connected architecture with width 16 and tanh nonlinearity. We used the Python package
torchdyn [4] which is built on torchdiffeq [1].

Results Our results are summarized in figure 3. The circular trajectories centered on the origin in the
phase space show that the potential converged to U(x) = 1

2x
2. Hence, the phase portrait is that of a

harmonic oscillator with angular frequency ω = 1, which does equal 2π/T . We further check that the flow
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converges to the restoring force f(x) = −x. Note that we didn’t impose any fΘ to be an odd function, or
any symmetry assumption.
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Figure 3: Evolution of the phase portrait after 60 training epochs.

4 Theoretical derivation
We prove here that harmonic potentials (2) are the only symmetric potentials yielding isochronism. Our

computations are inspired by, yet different from that of [2], as ours focuses on symmetric potentials.

Let U(x) denote the potential energy. We assume that U is a symmetric function, and is increasing on
R+ (and hence decreasing on R−). It hence admits a global minimum at 0.

Any solution of (1) has constant energy

E =
1

2
ẋ2 + U(x). (6)

Hence, the momentum ẋ is a function of the position x

ẋ = ±
√

2
√
E − U(x). (7)

Assume that all trajectories following the dynamics (1) are T -periodic. The two extreme points of the
trajectory are symmetric with restpect to 0 because the potential is symmetric. The turning points are
x = ± y, where the amplitude

y = y(E) > 0 (8)

is solution of
ẋ = 0 at x = ± y(E), (9)

or equivalently
U(± y(E)) = E. (10)

Since the travel time from 0 to y is equal to that from y to 0, the quarter of the period equals

T/4 =

∫ y(E)

0

dt (11)

=

√
2

2

∫ y(E)

0

dx√
E − U(x)

. (12)
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Changing variable to u(x) = U(x)/E yields

T/4 =

√
2

2

∫ 1

0

x′(uE)
√
uE

du√
u(1− u)

, (13)

where x(U) is the inverse function of U(x). Let g(U) = x′(U)
√
U . Since there is a one-to-one correspon-

dance (10) between the oscillator amplitude y and the energy of the system E, isochronism means that the
integral ∫ 1

0

g(uE)
du√

u(1− u)
(14)

is constant with respect to E ∈ R∗+, which implies that g is constant. Indeed,
if v = inf{u, g(u) 6= g(0)} < +∞, taking E = v + ε with small ε > 0 and E → 0 yield different values
for the integral (14).

Therefore x′(U) ∝ 1/
√
U and

U(x) ∝ x2. (15)

5 Discussion
This work showcases an application of neural ODEs, which allow to find the flow of an ODE by imposing

a loss on its trajectories.
Although our experimental results could suggest that the assumption of U being symmetric might be

irrelevant, it is shown in [2] that the result does not hold for any U . Hence the minimization of (5) has more
than one solution, and (2) is one of them.

References
[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equa-

tions, 2019.

[2] E. T. Osypowski and M. G. Olsson. Isynchronous motion in classical mechanics. American Journal of Physics,
55(8):720–725, August 1987.

[3] Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit, Xingjian Guo, Mike Innes, Jarrett Revels, Joakim Nyberg,
and Vijay Ivaturi. A comparison of automatic differentiation and continuous sensitivity analysis for derivatives
of differential equation solutions, 2018.

[4] Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Torchdyn: A neural
differential equations library. arXiv preprint arXiv:2009.09346, 2020.

4


	Isochronism problem
	Neural differential equations
	Learning the flow
	Theoretical derivation
	Discussion

