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The problem
Linear dynamics in Rd:

xt+1 = A?xt +B?ut + wt, 0 ≤ t < T

with noise wt ∼ N (0, σ2Id), control vari-
ables ut ∈ Rm subject to the power constraint

1

T

T−1∑
t=0

‖ut‖2 ≤ γ2,

and the unknown parameters of the dy-
namics θ? = (A?B?) ∈ Rd×(d+m), which are es-
timated from the observed trajectory (xt).

Goal Find the best inputs (ut) to drive the
system towards a maximally informative tra-
jectory for the estimation of θ?.

Motivation
In complex controlled systems (e.g. aircraft, robot, ...), the unknown
parameters are estimated in an identification phase. The estimation
must be fast and sample-efficient:

• collecting observations is costly (think of an aircraft test flight),

• the linear regime is a short-term approximation,

• the algorithm should work on-line.

Other prospectives include model-based reinforcement learning (LQR)
and bandits pure exploration.

Test flight of a A330neo,
source: Airbus.

Related work Theory of optimal design in the 1970s [1, 3], focused on single-input systems and on
input design in the frequency domain. Growing interest from the machine learning community lately
[5, 6] with theoretical (asymptotic) bounds. Identification algorithm TOPLE proposed in [6].

Identification and planning
Sequential identification: choose a policy πi
adaptively at times t = {ti} with the current esti-
mate θi.

Planning: πi is chosen to minimize a cost F .
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Algorithm 1 Sequential identification

inputs θ̂, {ti},F , θ0, π0

output final estimate θT
for 0 ≤ i ≤ n− 1 do

run the true system from ti + 1 to ti+1

with inputs ut = πi(x1:t, u1:t−1)

θi = θ̂(x1:ti , u1:ti−1) . estimation
πi solves min

π∈Πγ
F (π; θi, ti+1) . planning

end for

Optimal design
By the linear structure of the problem, a nat-
ural estimator is the least squares estimator

θ̂(τ)
>

= M−1
T−1

T−1∑
t=0

ztx
>
t+1

with zt =

(
xt
ut

)
and Mt =

∑t
s=0 zsz

>
s .

A natural cost functional is given by the theory
of optimal experiment design:

F (π; θ, t) = −Φ (Eθ [Mt])

for Φ(M) = −tr(M−1) (A-optimality) or
Φ(M) = log detM (D-optimality).

Greedy approach
Greedy planning: optimize the cost func-
tional one-step-ahead, i.e. set ti = i. Leads to

max
u∈Rm

Φ
(
Mt−1 + z(u)z(u)

>
)

such that z(u) =

(
xt
u

)
and ‖u‖2 = γ2.

Upsides Can be solved at minimal cost. The
learning algorithm runs online: ut is chosen
on-the-fly with the current knowledge θt.
Downsides Greedy approximation, no theo-
retical guarantees.

Algorithm 2 Greedy sequential identification
output final estimate θT
for 0 ≤ t ≤ T − 1 do

ut ∈ argmax
‖u‖2=γ2

Φ
(
Mt−1 + Eθ[ztz>t ]

)
play ut, observe zt+1

Mt = Mt + zt+1zt+1
>

θt+1
> = M−1

t+1

(
Mtθt

> + ztyt
>)

end for

Proposition For D-optimality and A-
optimality, greedy planning reduces to

min
u∈Rm

u>Qu− 2b>u

such that ‖u‖22 = γ2

with Q ∈ Rm×m and b ∈ Rm simple functions
of Mt−1 and θt.
Characterization of the minimizers by the La-
grange multiplier theorem. Efficient numerical
solution at the cost of an eigenvector decom-
position and a scalar root-finding search.

Results
We compare our greedy algorithm to gradient-based ap-
proaches. Two resources: number of observations T and
compute C. Larger C means more gradient steps. Average
over 1000 random matrices.
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Left Performance of gradient. Right Relative performance
of gradient vs greedy. Positive means greedy is better.
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Performance of various algorithms
versus the number of observations
averaged over 1000 random matrices.

Real-life system: lateral system of a a C-8 Buffalo aircraft. The lateral motion is controlled by the
aileron and rudder angles [2]. The number of observations is limited: T = 125. The results are
averaged over 1000 trials.

Random TOPLE Gradient Greedy Oracle
Estimation error 1.1× 10−1 8.6× 10−2 8.3× 10−2 8.2× 10−2 8.0× 10−2

Computation time 1 55.7 25 1.13 100

Conclusion
• We devised a fast, sample-efficient algorithm
for system identification.
• No theoretical guarantees but good perfor-
mance in a practical framework with limited
observations.
• Prospective: extension to LQR with unknown
parameters ? to non-linear systems ?
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