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Abstract— This work addresses the problem of exploration
in an unknown environment. For linear dynamical systems, we
use an experimental design framework and introduce an online
greedy policy where the control maximizes the information
of the next step. In a setting with a limited number of
experimental trials, our algorithm has low complexity and
shows experimentally competitive performances compared to
more elaborate gradient-based methods. 1

I. INTRODUCTION

System identification is a problem of great interest in
many fields such as econometrics, robotics, aeronautics,
mechanical engineering or reinforcement learning [1]–[5].
The task consists in estimating the parameters of an un-
known system by sampling trajectories from it as fast as
possible. To this end, inputs must be chosen so as to yield
maximally informative trajectories. We focus on linear time-
invariant (LTI) systems. Let A ∈ Rd×d and B ∈ Rd×m
be two matrices; we consider the following discrete-time
dynamics:

x0 = 0,

xt+1 = Axt +But + wt, 0 ≤ t ≤ T − 1
(1)

where xt ∈ Rd is the state, wt ∼ N (0, σ2I) is a normally
distributed isotropic noise with known variance σ2 and the
control variables ut ∈ Rm are chosen by the controller with
the following power constraint:

1

T

T−1∑
t=0

‖ut‖2 ≤ γ2. (2)

The system parameters (AB) := θ ∈ Rd×q (q = d + m)
are unknown initially and are to be estimated from observed
trajectories (xt). The goal of system identification is to
choose the inputs ut so as to drive the system to the most
informative states for the estimation of θ. It may happen that
the controller knows B, in which case θ = A and q = m.

System identification is a primary field in control theory.
It has been widely studied in the field of optimal design
of experiments [6], [7]. For LTI dynamic systems, classical
optimal design approaches provided results for single-input
single-output (SISO) systems [3], [8] or multi-input multi-
output (MIMO) systems in the frequency domain or with
randomized time-domain inputs [9]. More recently, system
identification received considerable attention in the machine
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learning community, with the aim of obtaining finite-time
bounds on the estimation error for A [10]–[12]. In [13]
and [14], the inputs are optimized in the frequency domain
to maximize an optimal design objective, with theoretical
estimation rate guarantees. In our approach, we directly
optimize deterministic inputs in the time domain for MIMO
LTI systems. An important aspect of system identification
is the quantity of computational resource and the number
of observations needed to reach a certain performance. We
study the computational complexity of our algorithms and
compare their performance against each other and against
an oracle, both on average and on real-life dynamic systems.

A. Notations

In the rest of this work, we note θ? = (A?B?)
the unknown parameter underlying the dynamics. We
suppose that the pair (A?, B?) is controllable: the ma-
trix C? = (B?A?B? . . . A

d−1
? B?) has rank d. Adopting the

notations of [14], we define a policy π : (x1:t, u0:t−1)→ ut
as a mapping from the past trajectory to future input. The set
of policies meeting the power constraint (2) is denoted Πγ .
We note τ = (x1:T , u0:T−1) a trajectory, and we extend this
notation to τ(π, T ) when the trajectory is obtained using a
policy π up to time T . We denote by Eθ the average for a
dynamical system given by (1) (where the randomness comes
from the noise wt and possibly from the policy inducing the
control ut).

B. Adaptive identification

Fix an estimator θ̂ : τ 7→ θ̂(τ) ∈ Rd×q , yielding an
estimate of the parameters from a given trajectory. Our
objective is to play the inputs ut of a policy π ∈ Πγ so
that the resulting trajectory τ gives a good estimation θ̂(τ)
for θ?. We measure this performance by the mean squared
error:

MSE(π) =
1

2
Eθ?

[∥∥∥θ̂(τ(π, T )
)
− θ?

∥∥∥2

F

]
. (3)

Of course, this quantity depends on θ? the true parameter of
the system which is unknown. A natural way of proceeding
is to estimate θ? sequentially, as follows.

Definition 1 (Adaptive system identification): Given an
estimate θ̂i of θ?, the policy for the next sequence of
inputs can be chosen so as to minimize a cost function F
approximating the MSE (3), using θ̂i as an approximation
of θ?. Then, these inputs are played and θ? is re-estimated
with the resulting trajectory, and so on. We call planning
the phase of minimizing F .
This approach is summarized in Algorithm 1, which takes
as inputs a first guess for the parameters to estimate θ0
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and a policy π0, the problem parameters σ and γ, a sched-
ule {t0,= 0, t1, . . . , tn−1, tn = T}, a cost functional F and
an estimator θ̂. An adaptive identification algorithm is hence

Algorithm 1 Sequential system identification

inputs initial guess θ0, π0, noise variance σ2, power γ2,
cost functional F , estimator θ̂
output final estimate θT
for 0 ≤ i ≤ n− 1 do

run the true system ti+1 − ti steps with
controls ut = πi(x1:t, u1:t−1)
θi = θ̂(x1:ti , u1:ti−1) . estimation
πi solves min

π∈Πγ
F (π; θi, ti+1) . planning

end for

determined by a triplet (θ̂, F, {ti}). A natural estimator is
the least squares estimator θ̂ = θ̂LS which we define in
Section II-A. In the rest of this work, we set θ̂ = θ̂LS.

Example 1 (Random policy): A naive strategy for system
identification consists in playing random inputs with max-
imal energy at each time step. This corresponds to the
choice ti = i and πi returning ut ∼ N (0, γ2/m).

Example 2 (Task-optimal pure exploration): In [14], the
authors propose the following cost function

F (π; θ, t) = tr
[(

Γt
(
τ(π); θ

))−1
]
, (4)

where Γt is defined in equation (8) below. As we will see
in Section II-B, this corresponds to A-optimal experimental
design. The authors show that this cost function approximates
the MSE in the long time limit at an optimal rate when T →
+∞. In their identification algorithm, they set ti = 2i × T0

for some initial epoch T0.
Example 3 (Oracle): An oracle is a controller who is

assumed to choose their policy with the knowledge of the
true parameter θ?. It can hence perform one single, offline
optimization of F (π; θ, T ) = MSE(π) over {ti} = {0, T}.
By definition, the inputs played by the oracle are the opti-
mal inputs for our problem of mean squared error system
identification.

C. Contributions

In practice, systems have complex dynamics and can only
be approximated locally by linear systems. We still believe
that in order to understand complex systems, we need to
understand identification of linear systems as on short time
scales, we can approximate the complex system with a linear
one. In order to be practical, our identification algorithm
needs to interact as little as possible with the true system and
to take decisions as fast as possible. With previous notations,
we are interested in cases where T is small (to ensure that
in practice the dynamics remains time-invariant and linear)
and where the estimation and planning steps need to be very
fast in order to run the algorithm online.

In this work, we explore a setting for linear system iden-
tification with hard constraints on the number of interactions
with the real system and on the computing resources used for

planning and estimation. To the best of our knowledge, finite-
time system identification guarantees are only available in the
large T limit which makes the hypothesis of linear dynamic
quite unlikely. Using a framework based on experimental
design, we propose a greedy online algorithm requiring
minimal computing resources. The resulting policy gives a
control that maximizes the amount of information collected
at the next step. We show empirically that for short inter-
actions with the system, this simple approach can actually
outperforms more sophisticated gradient-based methods.

We also propose a method to compute an oracle optimal
control, against which we can compare the different identi-
fication algorithms.

D. Related work

System identification has been studied extensively in the
last decades [1], [15]. The question of choosing the maxi-
mally informative input can be tackled in the framework of
classical experimental design [6], [16]. Several methods have
been proposed for the particular case of dynamic systems [8],
[9], [17] A comprehensive study can be found in [3], with a
focus on SISO systems.

In the machine learning community, the last few years
have seen an increasing interest in finite-time system identi-
fication [11], [12], [18], [19]. These works typically derive
theoretical error rates for linear dynamic system estimation
and produce high probability bounds guaranteeing that the
estimation is smaller than ε with probability greater than 1−δ
after a certain number of samples. The question of designing
optimal inputs is tackled in [13], [14]. The authors derive an
asymptotically optimal algorithm by computing the control
in the frequency domain. In [20], an approach to control
partially nonlinear systems is proposed.

II. BACKGROUND

It is convenient to describe the structure of the state as
a function of the inputs and the noise. By integrating the
dynamics (1), we obtain the following result.

Proposition 1: The state can be expressed as xt = x̄t+ x̃t
with

x̄t =

t−1∑
s=0

At−1−sBus, x̃t =

t−1∑
s=0

At−1−sws. (5)

Note that that x̄t = Eθ[xt] solves the deterministic dy-
namics x̄t+1 = Ax̄t + But and x̃t has zero mean and is
independent of the control. The two terms x̄t and x̃t depend
linearly on the Bus and the ws respectively.

The data-generating distribution knowing the parameter θ
can be computed using the probability chain rule with the
dynamics (1):

p(τ |θ) =
1√

2πσ2
exp

[
− 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

]
.

(6)
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We define the log-likelihood (up to a constant):

`(τ, θ) = − 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

= − 1

2σ2
‖Y − Zθ>‖2F,

(7)

where we have noted Y = (y0 . . . yT−1)
> ∈ RT×d and

Z = (z0 . . . zT−1
>

) ∈ RT×q the observations and the co-
variates associated to the parameter θ. If θ = (AB), then

yt = xt+1, zt =

(
xt
ut

)
. If θ = A, then yt = xt+1 − But

and zt = xt. We also note U = (u0 . . . uT−1
>

) ∈ RT×m
the input matrix and X = (x0 . . . xT−1

>
) ∈ RT×d the state

matrix. We define the moment matrix Mt =
t∑

s=0
ztzt

> and

the Gramians of the system at time t:

Γt(τ ; θ) =
1

t
Eθ [Mt−1] (8)

and Gt(A) =
t−1∑
s=0

AsAs>. Note that Z>Z = MT

A. Ordinary least squares

Given a trajectory, a natural estimator for the matrix A?
is the least squares estimator. The theory of least squares
provides us with a formula for the mean squared error with
respect to the ground truth, which can be used as a measure
of the quality of a control.

Proposition 2 (Ordinary least squares estimator): Given
inputs U and noise W , the ordinary least squares (OLS)
estimator associated to the resulting trajectory X is

θ̂(τ) =
(
(Z>Z)−1Z>Y

)>. (9)

and its difference to θ? is given by(
θ̂(τ)− θ?

)>
= (Z>Z)−1Z>W

= Z+W,
(10)

where Z+ denotes the pseudo-inverse of Z. Noting θt the
least squares estimator obtained from the trajectory up to
time t, we recall the recursive update formula

θt+1
> = M−1

t+1

(
Mtθt + ztyt

>). (11)
Proof: The least squares estimator minimizes the

quadratic loss 1
2

T−1∑
t=0
‖xt+1 −Axt −But‖22, which writes

1

2

∥∥Y − Zθ>∥∥2

F
=

1

2

d∑
j=1

‖Yj − Zθj‖22 (12)

with Yj the j-th column of Y and θj the j-th row of θ.
The d terms of the sum can be minimized independently,
with each θj minimizing the least squares of the vecto-
rial relation Yj = Zβ. The solution for θj is equal to
θ̂j = (Z>Z)−1Z>Yj (see e.g. [21]). By concatenating
the columns, we obtain that θ̂> = (Z>Z)−1Z>Y , which
proves (9). Substituting Y = Zθ?

> +W yields (10). Note

here that the controllability assumption on (A?, B?) ensures
that Z can be made full rank, and hence that the moment
matrix Z>Z is invertible.

Definition 2 (OLS mean squared error): For a given tra-
jectory τ generated with a matrix A? and noise W , the
Euclidean mean squared error (MSE) is

‖θ̂LS − θ?‖2F =
∥∥((Z>Z)−1Z>W

)>∥∥2

2

= tr
[
Z(Z>Z)−2Z>WW>

]
.

(13)

If the noise W and the covariates Z were independent, then
the expected error would reduce to the A-optimal design
objective E[tr(Z>Z)−1]. It is not the case in our framework
since Z is generated with W .

B. Classical optimal design

The correlation between Z and W makes the derivation
of a tractable expression for the expectation of (13) compli-
cated. In this section, we show how a more tractable objective
can be computed by applying theory of optimal experimental
design [6], [22]. In the classical theory of optimal design, the
informativeness of an experiment is measured by the size of
the expected Fisher information.

Definition 3 (Fisher information matrix): Let `(τ, θ) =
log p(τ |θ) denote the log-likelihood of the data-generating
distribution knowing the parameter θ. The Fisher information
matrix is defined as

I(θ) = −Eθ
[
∂2`(τ, θ)

∂θ2

]
∈ Rqd×qd. (14)

Proposition 3: For the LTI system (1),

I(θ) =
T

σ2
diag(ΓT , . . . ,ΓT ), (15)

the number of blocks being d. Furthermore, ΓT can be
computed as

ΓT =
1

T

T−1∑
t=0

z̄tz̄
>
t + σ2Gt(A). (16)

Proof: The log-likelihood (7) can be separated into
a sum over the θj as in (12). The quadratic term in θj
is ‖Zθj‖22 = θj

>Z>Zθj and the other terms are constant
or linear. Differentiating twice and taking the expectation
gives Eθ[Z>Z], which yields the desired result after dividing
by −σ2.

Following the decomposition (5), ztzt> = z̄tz̄
>
t + z̃tz̃

>
t +

z̄tz̃
>
t + z̃tz̄

>
t . Taking the expectation, we obtain E[ztzt

>] =
z̄tz̄
>
t + σ2Gt(A). Summing over t yields the result. Note

that the first term is deterministic and depends on the control
whereas the second term depends on the noise and not on
the control. Therefore, the expected moment matrix is the
sum of a noise term and of a deterministic control term.

Definition 4: In classical optimal design, the size of
the information matrix is measured by some crite-
rion Φ : S+

n (R)→ R+, which is a functional of its eigen-
values λ1, . . . , λd ≥ 0. The quantity Φ(I) represents the
amount of information brought by the experiment and should
be maximized.

Example 4: Some of the usual criteria are presented in
Table I.
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TABLE I: Alphabetical design criteria, matrix operator form.

Optimality Φ(λ1, . . . , λd)

A-optimality −
(
1/λ1 + · · · + 1/λd

)
D-optimality log λ1 + . . . log λd

E-optimality λ1

The criteria are required to have properties such as ho-
mogeneity, monotonicity and concavity in the sense of the
Loewner ordering, which can be interpreted in terms of infor-
mation theory: monotonicity means that a larger information
matrix brings a greater amount of information, concavity
means that information cannot be increased by interpolation
between experiments. We refer to [16] for more details.

The theory of classical optimal design leads to the defi-
nition of the following optimal design informativeness func-
tional.

Definition 5 (Optimal design functional): Let Φ denote
an optimal design criterion. Then the associated cost is
defined as

FΦ(π; θ, t) = −Φ
[
Γt
(
τ(π); θ

)]
= −Φ

[
t−1∑
s=0

z̄sz̄
>
s + σ2Gs(A)

]
,

(17)

where the z̄s depend on the inputs us through (5).
Remark 1: We note from equation (5) that Z is affine

in U . Hence, Z>Z is quadratic in U , and maximizing (17)
efficiently is challenging even with concavity assumptions
on Φ.

C. Small noise regime

The optimal design functional (17) can be related to the
MSE in the small noise regime σ � γ.

Proposition 4: The A-optimal design functional (17) is
a O(σ/γ) approximation of the MSE (3):

MSE(π) =
1

2
FA(π; θ?, T ) +O(σ/γ). (18)

Proof: We introduce the rescaled variables ζ = (1/γ)Z
and ω = (1/σ)W which are of order 1. Extending the
notations of equation (5), Z = Z̄+ Z̃, where the first term is
of order γ and the second is of order σ. Therefore, Z = Z̄+
O(σ), or equivalently ζ = ζ̄+O(σ/γ). By Proposition 7, ζ+

is differentiable at ζ̄ so ζ+ = ζ̄+ + O(σ/γ). Taking the
squared norm and using Cauchy-Schwartz inequality, we
obtain ∥∥ζ+ω

∥∥2
=
∥∥ζ̄+ω

∥∥2
+O(σ/γ). (19)

Furthermore,

E
[∥∥ζ̄+ω

∥∥2
]

= E
[
tr
(
ζ̄(ζ̄>ζ̄)−2ζ̄>ωω>

)]
= tr

[
(ζ̄>ζ̄)−1

]
.

(20)

Gathering (19) and (20), we obtain

1

2
E
[∥∥ζ+ω

∥∥2
]

=
1

2
tr
[
(ζ̄>ζ̄)−1

]
+O(σ/γ). (21)

Remark 2: In classical least squares regression, the co-
variates Z are independent of the noise W . As a conse-
quence, the minimziation of the mean squared estimation
error leads to the classical A-optimality criterion. This does
not hold in general in our framework because the signal
and the noise are coupled by the dynamics (1). However,
Proposition 18 shows that this criterion does hold in the small
noise regime at first order in σ/γ. Indeed, when σ � γ the
contribution of the noise to the signal is negligible because
the deterministic part of the signal is of order γ.

Remark 3: From Proposition 4 and the definition of
A-optimality, we see that the MSE approximately scales
like 1/T when the number of observations increases. This is
confirmed by experiments.

III. ONLINE GREEDY IDENTIFICATION

A. One-step-ahead objective

A simple, natural approach for system identification con-
sists in choosing a decision sequentially at each time step.
At each time t, the control ut is chosen with energy γ2

so as to maximize a one-step-ahead objective. Then, a
new observation xt is collected and the process repeats.
Following Section II-B, ut can be chosen to maximize the
value of FΦ at t + 1. This corresponds to the choice of
functional F = FΦ and to the one-step schedule ti = i.

Upon choosing ut, the policy πt should select ut so as
to maximize the design criterion Φ applied on the one-
step ahead, ut-dependent information matrix, the past tra-
jectory x0:t being fixed. The one-step-ahead information
matrix is Ms−1 + EAs [zszs>], with s = t when B? is
estimated (because then then next ut-dependent covariate
is zt) and s = t+ 1 if B? is known, because then the next
ut-dependent covariate is xt+1. Therefore, one-step ahead
planning yields the following optimization problem:

max
u∈Rm

Φ
(
M̄t + z(u)z(u)

>
)

such that ‖u‖2 ≤ γ2,
(22)

with

M̄t =

{
Mt−1 + σ2Gt(At) if θ = (A, B)

Mt + σ2Gt+1(At) if θ = A,
(23)

and

z(u) =


(
xt

u

)
if θ = (A, B)

Atxt +B?ut if θ = A.

(24)

Remark 4: With this greedy policy, the energy constraint
imposed for one input ensures that the global power con-
straint (2) is met.
The corresponding identification process is detailed in Algo-
rithm 2. We will see in Section III-B that problem (22) can
be solved accurately and at a cheap cost. Moreover, Algo-
rithm 2 offers the advantage of improving the knowledge
of θ? at each time step using all the available information
on the parameter to plan at each time step. This way, the
bias affecting planning due to the uncertainty about θ? is
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minimized. When planning is performed over larger time
sequences, a large bias could impair the identification of the
system.

Algorithm 2 Greedy system identification

inputs initial guess θ0, noise variance σ2, power γ2, time
horizon T , design criterion Φ
output final estimate θT
for 0 ≤ t ≤ T − 1 do

ut ∈ argmax
‖u‖2≤γ2

Φ
(
M̄t + z(u)z(u)

>)
play ut, observe xt+1

Mt+1 = Mt + xt+1xt+1
>

θt+1
> = M−1

t+1

(
Mtθt + xtyt

>)
end for

B. Solving the one-step optimal design problem

We show that the one-step ahead planning for online
system identification is equivalent to a convex quadratic
program which can be solved efficiently.

Proposition 5: For D-optimality and A-optimality, there
exists a symmetric matrix Q ∈ Rm×m and b ∈ Rm the
problem (22) is equivalent to

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 ≤ γ2.
(25)

Proof: From Proposition 8, we find that

log det
(
M̄t + z(u)z(u)

>)
= log det M̄t

+ log
(
1 + z(u)

>
M̄t
−1
z(u)

)
.

(26)
Similarly, from Corollary 1 ,

−tr

[(
M̄t + z(u)z(u)

>
)−1

]
= 1− tr

[
M̄t
−1
]

− 1

1 + z(u)
>
M̄t
−1
z(u)

.

(27)
Maximizing these quantities with respect to u amounts to
maximizing z(u)

>
M̄t
−1
z(u). The matrix M̄t

−1 is sym-
metric because the Mt and the Gt are symmetric, and
so are its diagonal submatrices. Given the affine depen-
dence of z in u and the (possible) block structure of z
and Mt, z(u)

>
M̄t
−1
z(u) is of the form u>Qu− 2b>u, up

to a constant. We provide an explicit formula for Q and b in
the case where θ = A in Remark 5
We now characterize the minimizers of Problem (25). If a
minimizer can be found in the interior of the constraining
sphere, then Q is positive semidefinite and the problem
can be tackled using unconstrainted optimization. We thus
consider the equality constrained problem

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 = γ2.
(28)

Proposition 6: Note {αi} the eigenvalues of Q, and ui
and bi the coordinates of u∗ and b in a corresponding or-
thonormal basis. Then a minimizer u∗ satisfies the following
equations for some nonzero scalar µ:

ui = bi/(αi + µ) and
∑
i

bi
2

(αi + µ)2
= γ2. (29)

Proof: By the Lagrange multiplier theorem there exists
a nonzero scalar µ such that Qu∗ − b = −µu∗, where µ
can be scaled such that Q + µId is nonsingular. Inverting
the optimal condition and expanding the equality constraint
gives the two conditions.
Problem (25) can hence be solved at the cost of a scalar root-
finding and an eigenvalue decomposition. In [23], bounds
are provided so as to initialize the root-finding method
efficiently.

Remark 5: In the case where B? (i.e. θ = A), Q and b
have the following expressions:

Q = −B>M̄t
−1
B, b = B>M̄t

−1
Atxt. (30)

IV. GRADIENT-BASED IDENTIFICATION

In this section, we propose a gradient-based approach
to planning. In a sequential identification scheme of Algo-
rithm 1, the cost functions (3) and (17) can be optimized
by projected gradient descent. This builds on the following
remark.

Remark 6 (Differentiability of the functionals): The
functionals (3) and (17) are differentiable functions of the
output. Indeed, X is an affine function of the inputs as
shown in Proposition 1, and the controllability of (A,B)
guarantees that Z>Z is positive definite. Furthermore, the
operations of pseudo-inverse (see Proposition 7) and the
optimal design criteria of Table I are differentiable over the
set of positive definite matrices.
The gradients with respect to U can either be derived
analytically (see [3], section 6 for the derivation of an
adjoint equation) or automatically in an automatic differen-
tiation framework. We rescale U at each step to ensure the
power constraint is met. The ti are chosen arbitrarily. The
computational complexity of the algorithm is linear in T :
each gradient step backpropagates through the planning time
interval.

A. Gradient-based optimal design

We propose a gradient-based method to optimize U by
performing gradient descent directly on U in functional (17).
Note that we optimize the inputs directly in the time domain,
whereas other approaches such as [14] perform optimization
in the frequency domain by restricting the control to periodic
inputs.

B. Gradient through the oracle MSE

Given the true parameters θ? = (A?B?), the optimal
control for the MSE minimizes the MSE cost (3), as ex-
plained Example 3. However, the dependency between Z
and W makes this functional complicated to evaluate and
to minimize with respect to the inputs, even when the
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true parameters θ? are known. We propose a numerical
method to minimize (3) using automatic differentiation an
Monte-Carlo sampling. Given one realization of the noise
and inputs U , the gradient of the squared error (13) can
be computed automatically in an automatic differentiation
framework. Then, one can sample a batch of b noise matrices
W1, . . . ,Wb ∼ N (0, σ2I) and approximate the gradient
of (3) by

∇MSE(U) ' 1

b

b∑
i=1

∇U tr
[
Z(Z>Z)−2Z>WiWi

>
]
. (31)

Although we do not have convergence guarantees due to the
lack of structure of the objective function, the gradient de-
scent does converge in practice, to a control that outperforms
the adaptive controls.

Algorithm 3 Planning by projected gradient descent

inputs At, σ, γ, T , η, Ht

output control U ∈ R(T−t)×m

for 0 ≤ j ≤ ngradient do
G(U) = F [X(U)|Ht]
U = U − η∇G(U)
U = (γ

√
T/‖U‖F)× U

end for

V. PERFORMANCE STUDY

A. Complexity analysis

Definition 6 (Performance): Let θT denote the estimation
produced by the learning algorithm at the end of identifi-
cation. The performance of the policy π is measured by
the average error over the experiments on the true sys-
tem: ε = MSE(π). We study the performance of our algo-
rithms as a function of the number of observations T and C
the computational cost. We also introduce the computational
rate c = C/T .
Algorithm 2 and the gradient identification algorithm have
linear time complexity. Hence, we define cgreedy and cgradient

for a given number of gradient iterations. In practice, we
find that cgreedy � cgradient, where cgradient is the com-
putational rate needed for the gradient descent to converge.
As pointed out in Remark 3, the squared error essentially
scales like 1/T . This is verified experimentally. Given the
previous observations, we postulate that the performance of
our algorithms takes the form

ε(C, T ) = η(c)/T. (32)

We build an experimental diagram where we plot the average
estimation error for θ? = A? as a function of the two types
of resource T and C for the gradient algorithm. Increasing
C allows for more gradient steps. We run trials with random
matrices A? of size d = 4, with B = Id. We set γ = 1,
σ = 10−2, T ∈ [60, 220]. The gradient algorithm optimizes
the A-optimality functional (17) with a batch size of b = 100
and {ti} = {0, 10, T/2, T}. The obtained performances are
to be compared with those of the greedy algorithm (with
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0.00
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Fig. 1: Experimental (T,C) diagram. Left Performance of
the gradient algorithm, with varying T and C (varying
number of gradient steps). Right Relative performance of
the gradient algorithm with respect to the greedy algorithm:
negative means that the gradient performs better.

TABLE II: Average computational rate for the different
algorithms.

Random TOPLE [13] Gradient Greedy
c 1 nTOPLE × 0.02 ngradient × 0.5 2.36

the A-optimality cost function), which has a fixed, small
computational rate c. Our diagrams are plotted on Fig. 1.

Our diagrams show that the greedy algorithm is preferable
in a phase of low computational rate: C < c×T , as suggested
by (32). The phase separation corresponds to a relatively
high number of gradient steps. Indeed, the iso-performance
along this line are almost vertical, meaning that the gradient
descent has almost converged. Furthermore, the maximum
performance gain of the gradient algorithm relatively to the
greedy algorithm is of 10%.

B. Average estimation error

We now test the performances of our algorithms on
random matrices, with the same settings as in the previous
experiment. For the gradient algorithm, the minimal number
of gradient iterations to reach maximum performance for was
found to be ngradient = 120. For each matrix A?, we also
compute an oracle optimal control using Algorithm 3 with
a batch size of b = 100, and run a random input baseline
(see Example 1), and the TOPLE algorithm of [14].

Both the gradient algorithm and the greedy algorithm
closely approach the oracle. The former performs slightly
better than the latter in average. However, the compu-
tational cost of the gradient algorithm is far larger, as
Table II shows. Indeed, the number of gradient steps to
reach convergence in this setting is found to be of order
ngradient ' 100. Note that the number of sub-gradient steps
for the TOPLE algorithm is found to be nTOPLE ' 1000,
and so nTOPLE ' 20× ngradient.

C. Identification of an aircraft system

We now study a more realistic setting from the field of
aeronautics: we apply system identification to an aircraft
system. We use the numerical values issued in a report from
the NASA [4]. The lateral motion of a Lockheed Jet star is
described by the slideslip and roll angles and the roll and
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Fig. 2: Identification error for random A?, averaged over
1000 samples.

TABLE III: Frobenius error for A? in the lateral system of
the aircraft, T = 150. Our oracle algorithm reaches an error
of 8.0 × 10−2. The computational time is expressed in an
arbitrary unit.

Random TOPLE [13] MSE gradient Greedy
Error 1.1 × 10−1 8.6 × 10−2 8.3 × 10−2 8.2 × 10−2

Time 1 55.7 25 1.13

yaw rates (β, φ, p, r)> := x. The control variables are the
aileron and rudder angles (δa, δr) := u. The linear dynamics
for an aircraft flying at 573.7 meters/sec at 6.096 meters are
given by the following matrix, obtained after discretization
and normalization of the continuous-time system [4]:

A? =


.955 −.0113 0 −.0284

0 1 .0568 0
−.25 0 −.963 .00496
.168 0 −.00476 −.993

 , (33)

B? = 0.1×


0 0.0116
0 0

1.62 .789
0 −.87

 , (34)

and σ = 1, γ ' 4 deg. We apply our algorithms on this LTI
system. Our results are summarized in Table III.

As we can see, the greedy algorithm outperforms the
gradient-based algorithms, both in performance and in com-
putational cost. This could be explained by the fact that the
signal-to-noise ratio in this system is of order 1, hence the
estimation bias in planning is large and it is more effective to
plan one-step-ahead than to do planning over large epochs.
We obtain similar results for the longitudinal system of a
C-8 Buffalo aircraft [4].

VI. CONCLUSION

In this work, we explore a setting for linear system iden-
tification with hard constraints on the number of interactions
with the real system and on the computing resources used
for planning and estimation. We introduce a greedy online
algorithm requiring minimal computing resources and show

empirically that for small values of interactions with the sys-
tem, it can actually outperform more sophisticated gradient-
based methods. Extension of this approach to optimal control
for the LQR is an interesting direction of future research.

VII. MATRIX CALCULUS

Proposition 7: On a domain where X has linearly inde-
pendent columns, X+ is a differentiable function of X and

dX+ = −X+dXX+ +X+X+>dX>(I −XX+). (35)
Proof: See [24].

Lemma 1: Let A ∈ Rk×` and B ∈ Rn×m. Then

det(Ik,m +AB) = det(In,` +BA). (36)
Proposition 8: Let M ∈ Rd×d be a nonsingular matrix

and x, y ∈ Rd. Then

det(M + xy>) = detM × (1 + y>M−1x). (37)
Proof:

M + xy> = M(I +M−1xy>) (38)

Apply Lemma 1:

det(M + xy>) = detM × det(Id +M−1xy>)

= detM × det(I1 + y>M−1x)

= detM × (1 + y>M−1x).

(39)

Proof: See [25].
Proposition 9: Let 0 < A ≤ B be positive definite

matrices of Rd×d, and x ∈ Rd. Then

log det(A+xx>)−log detA ≥ log det(B+xx>)−log detB.
(40)

Proof: By Proposition 8,

log det(A+ xx>)− log detA = log(1 + x>A−1x) (41)

Since 0 < A ≤ B, both matrices are nonsingular and 0 <
B−1 ≤ A−1. Hence,

log(1 + x>A−1x) ≥ log(1 + x>B−1x)

= log det(B + xx>)− log detB
(42)

Proposition 8 admits the following generalization.
Proposition 10: Let M ∈ Rd×d be a nonsingular matrix

and let x1, . . . , xn, y1, . . . , y ∈ Rd. Then

det

(
M +

n∑
i=1

xiyi
>

)
= detM

+

n∑
i=1

xi
>adj

M +

i−1∑
j=1

xjyj
>

 yi

(43)
Proof: See [25].

Proposition 11: Let M ∈ Rd×d be a nonsingular matrix
and x, y ∈ Rd. Then (M + xy>) is nonsingular and

(M + xy>)−1 = (Id −
1

1 + x>M−1y
xy>)M−1 (44)
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Corollary 1: Let M ∈ Rd×d be a nonsingular matrix and
x, y ∈ Rd. Then

tr
[
(M + xy>)−1

]
= tr[M−1]− y>M−1x

1 + x>M−1y
(45)
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