

D-optimal exploration of physical systems

Matthieu Blanke, Marc Lelarge

DI ENS, INRIA Paris

Motivation

In order to be effective, control theory needs a faithful model of the controlled system. In most cases, parameters must be fitted using experimental data, but running experiments is cosly so the system must be explored efficiently.

Exploration: an agent takes actions to move in an unknown environment in order to map it.

The problem

Nonlinear dynamics in \mathbb{R}^d :

 $x_{t+1} = x_t + dt f(x_t, u_t) + w_t, \quad 0 \le t \le T - 1$

with noise $w_t \sim \mathcal{N}(0, \sigma^2 I_d)$, control variables $u_t \in \mathbb{R}^m$ subject to the power con-

Exploration algorithm

Policy π : $(x_{0:t}, u_{0:t-1}; f_{\theta}) \mapsto u_t$ models our choice of the inputs.

Algorithm 1 Online neural exploration **input** neural model f_{θ} , policy π , time hori-

Input design

How to choose u_t ? The theory of linearized optimal design suggests optimizing the Gram matrix of the covariates:

```
\max_{n \in \mathbb{N}} \log \det \left( \mathbb{E}[M_T] \right)
```

straint $||u_t||^2 \leq \gamma^2$. A model f_{θ} is fitted by regression on the past observations:

 $\theta_t = \hat{\theta} \left(x_{0:t+1}, u_{0:t} \right)$

We focus on online algorithms.

Goal Find a policy yielding inputs (u_t) that drive the system towards a maximally informative trajectory, with small computational complexity.

zon T, time-step dt, learning rate η **output** dynamics model f_{θ} for $0 \le t \le T - 1$ do choose $u_t = \pi_t(x_{0:t}, u_{0:t-1}; f_{\theta})$ observe $x_{t+1} = x_t + dt f(x_t, u_t)$ compute the loss $\ell_t = \|f_{\theta}(x_t, u_t) - (x_{t+1} - x_t)/dt\|_2^2$ update $\theta \leftarrow \theta - \eta \nabla \ell_t(\theta)$ end for

with
$$M_t = \sum_{s=0}^{t-1} J_s^{\top} J_s$$
 and $J_t = \frac{\partial f_{\theta}}{\partial \theta}(x_t, u_t, \theta).$

We derive a tractable, greedy approximation of this objective yielding a quadratic optimization problem. The resulting exploration algorithm is is fast, online, and experiments show that it is sample efficient.

Results

Experiments We test our exploration algorithm on several environments from classical control. The dynamics are initially unknown and are learned online. The models f_{θ} include neural networks. Our D-optimal policy is compared with baselines.

 L^2 error against time

D-optimal trajectories in the phase space

 φ

Baselines Random inputs, maximally uniform trajectory in the state space, periodic inputs.

Results Our D-optimal policy is sample efficient. It yields large amplitude trajectories that are informative for the underlying model.

