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Abstract

Deep generative models hold great promise for representing complex physical
systems, but their deployment is currently limited by the lack of guarantees on
the physical plausibility of the generated outputs. Ensuring that known physical
constraints are enforced is therefore critical when applying generative models to
scientific and engineering problems. We address this limitation by developing
a principled framework for sampling from a target distribution while rigorously
satisfying physical constraints. Leveraging the variational formulation of Langevin
dynamics, we propose Split Augmented Langevin (SAL), a novel primal-dual
sampling algorithm that enforces constraints progressively through variable split-
ting, with convergence guarantees. While the method is developed theoretically
for Langevin dynamics, we demonstrate its effective applicability to diffusion
models. In particular, we use constrained diffusion models to generate physical
fields satisfying energy and mass conservation laws. We apply our method to
diffusion-based data assimilation on a complex physical system, where enforcing
physical constraints substantially improves both forecast accuracy and the preser-
vation of critical conserved quantities. We also demonstrate the potential of SAL
for challenging feasibility problems in optimal control.

1 Introduction

Generative deep learning methods have recently emerged as powerful tools to model and sample
from complex data distributions, with successful applications in image synthesis [1], protein and
material design [2], and probabilistic weather forecasting [3]. By learning a stochastic process from a
training dataset, these models can generate arbitrarily many plausible samples conditioned on partial
information. They are particularly useful in the physical sciences, where data is often scarce and
multiple states may be consistent with available observations [4, 5].

In domains such as image or text generation, visual or perceptual similarity is often sufficient to
assess sample quality. Scientific applications, in contrast, frequently require samples to satisfy
strict mathematical constraints, such as conservation laws or system dynamics [6]. In such cases,
approximate resemblance is not enough: generated samples must obey the governing physical
principles. This requirement becomes even more critical when generative models are used out of
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distribution or in an autoregressive fashion, where small violations can accumulate and severely
degrade long-term accuracy [7]. Developing constrained sampling methods applicable to pre-trained
generative models in a zero-shot scenario (i.e. without additional training) is therefore crucial.

Modern generative models, including energy-based, score-based, and diffusion models [8–11],
typically rely on gradually transforming noise into samples from the data distribution through a
learned stochastic process. A core mechanism underlying many of these models is Langevin dynamics,
where noisy gradient steps push the samples toward high-likelihood regions. Enforcing mathematical
constraints during Langevin sampling remains a challenging problem. A natural idea is to project
each iterate onto the constraint set, leading to the classical projected Langevin algorithm [12, 13] and,
more recently, to projected diffusion [14]. Other approaches draw from constrained optimization,
using barrier functions [15] or mirror maps [16]. While these methods offer theoretical guarantees
in convex settings, they tend to perform poorly when applied to non-convex constraints, which are
common in physical systems. In such cases, strict projections or barriers can cause the dynamics
to become trapped in limited regions of the constraint set, hindering exploration and introducing
significant sampling bias. In another line of work, Chamon et al. [17] propose a primal-dual Langevin
algorithm, where constraints are satisfied in expectation with a Lagrangian relaxation. However, for
many physical applications, enforcing strict constraints for all samples is essential. To the best of our
knowledge, no existing method combines unbiased exploration with tight constraint satisfaction.

Contributions Inspired by variational formulations of Langevin dynamics and primal-dual opti-
mization, we propose a novel sampling algorithm that bridges the gap between unbiased Langevin
sampling and constraint satisfaction, called Split Augmented Langevin (SAL). Our method enforces
hard constraints while preserving the exploration capability of Langevin dynamics. It guarantees
strict constraint satisfaction and benefits from convergence guarantees via duality analysis. We show
that our method generalizes to deep generative modeling and diffusion models. We demonstrate the
effectiveness of SAL on physically-constrained sampling tasks on complex systems, including data
assimilation problems where maintaining physical invariants is key to reliable forecasting, and on
non-convex feasibility problems in optimal control.

2 Problem formulation of constrained Langevin sampling

In this section, we provide a mathematical formulation of constrained sampling: given a generative
model and a constraint set, our goal is to generate samples from the conditional distribution supported
on the constraint set. This constrained distribution arises in many applications where generated
samples must strictly satisfy known physical constraints. We pose the problem in the framework of the
Langevin Monte Carlo algorithm [18], a fundamental method that underlies many modern generative
modeling frameworks. The application to deep generative models is discussed in Section 4.4.

Langevin Monte Carlo Sampling algorithms aim to generate random variables following a target
distribution assumed to admit a density of the form p(x) := e−f(x)/Z on Rd, where f(x) is called
the potential function and is assumed to be differentiable. The Markov chain Monte Carlo methods
design iterative algorithms producing samples (xt) whose distribution qt converges to p. Among
them, the Langevin Monte Carlo algorithm plays a central role. It requires access to the gradient of
the potential∇f(x), also called the score function [19], and performs noisy gradient descent updates

xt+1 = xt − τ∇f(xt) +
√

2τwt, wt
i.i.d.∼ N (0, Id). (2.1)

where τ is the step size. Under standard assumptions, the stationary distribution of the Markov chain
converges to p [13].

Constrained target distribution We now consider the case where the samples are known to satisfy
hard constraints at sampling time, in the form of a bounded measurable set C ⊂ Rd. Our objective is
then to sample from the conditional density supported on C:

pC(x) :=
1

ZC
e−f(x)

1C(x), ∀x ∈ Rd, (2.2)

with 1C the indicator function of C and ZC is a normalizing constant. This conditional distribution
can be rewritten using a modified potential: pC(x) := e−fC(x)/ZC , with the constrained poten-
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tial fC(x) := f(x) + χC(x), defined with the characteristic function of C

χC(x) =

{
0 if x ∈ C,
+∞ otherwise.

(2.3)

We do not make any assumption on the constraint set C, except that it is bounded and that pC is
well-defined. Next, we provide examples of such constraints that may occur in physical applications.
Example 2.1 [Equality constraints] In many physical settings, the constraint set C can be character-
ized by equality constraints of the form C = {x ∈ Rd | h(x) = 0}, where c : Rd → Rm is a smooth
function. For instance, when x describes a discretized physical field, conservation of energy can
often be expressed as h(x) = 1

2‖x‖22 − E for a prescribed energy E, while conservation of mass
corresponds to h(x) =

∑
i xi −M for a prescribed mass M .

Objective Our objective is to design a sampling algorithm that produces samples distributed
according to pC for any constraint set C. It should use only access to the score function ∇f(x) of
the unconstrained density, and mathematical operations related to C such as constraint functions or a
projection operator PC onto C. The method should operate in a "zero-shot" scenario: it should require
no access to additional data and no modification of the pre-trained generative model.
Example 2.2 [Projected Langevin] A natural idea to enforce hard constraints in Langevin dynamics
is to interleave each unconstrained update (2.1) with a projection onto C, leading to

xt+1 = PC(xt − τ∇f(xt) +
√

2τwt), wt
i.i.d.∼ N (0, Id). (2.4)

The corresponding constrained sampling algorithm is the projected Langevin algorithm [12, 20],
which is detailed in Algorithm 4 of Appendix A, with its connection to proximal methods.

When C is convex and p is log-concave, projected Langevin and projected diffusion enjoy strong
theoretical guarantees [12, 14, 20]. However, for non-convex constraint sets, hard projection at each
step can significantly hinder exploration: although samples satisfy the constraint, they may be biased
toward subregions of C that are easier to reach [16, 21]. This motivates the need for sampling methods
that gradually enforce constraints without compromising exploration.

Algorithm evaluation Evaluating the performance of constrained sampling algorithms is challeng-
ing, as pC is generally intractable. In practice, we rely on two key performance criteria: constraint
violation and bias. First, since strict constraint satisfaction is often critical in physical applications,
a crucial metric is constraint violation. It measures how far generated samples deviate from the
constraint set C, for example, via a distance function or a residual. Second, even when samples lie
within C, they must accurately follow the conditional distribution pC . While direct evaluation is
usually infeasible, one can assess the sampling bias by comparing empirical statistics of the samples
to known or estimated quantities under pC .

3 Variational framework of sampling and duality

In the following, we review the variational structure of Langevin dynamics and Lagrangian duality
introduced by [17], which will guide the development of our strictly constrained algorithm in Section 4.
Importantly, the duality framework outlined in this section enforces constraints only on average, and
therefore does not directly target the strictly constrained distribution pC , which is the ultimate goal of
our work.

Variational view of Langevin Monte Carlo Langevin Monte Carlo admits a variational interpreta-
tion as a stochastic approximation of a gradient flow in the space of probability distributions. Let q be a
probability density absolutely continuous with respect to the target density p, and define the Kullback-
Leibler divergenceD(q‖p) :=

∫
Rd q log(q/p), which is a non-negative information-theoretic quantity

measuring how q differs from p [22]. We define the functional

F (q) := D(q‖p). (3.1)

Then, Langevin dynamics can be interpreted as a stochastic particle approximation of the infinite-
dimensional gradient flow minimizing F in the Wasserstein space of probability measures [23, 24].
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Specifically, each iteration of the Langevin algorithm corresponds to an approximate gradient step
with respect to F on the distribution qt of samples xt, driving it toward the minimizer q? = p. We
refer to Appendix C for more details on this formulation.

Building on this variational formalism, constraints on average can be incorporated using classical
tools from convex optimization [25]. This framework is developed in [17], where both equality and
inequality constraints are considered. We focus here on equality constraints for clarity. Let P2(Rd)
denote the set of probability measures with finite second moments, and let h : Rd → Rm be a
constraint function. The goal is to find the closest probability distribution to p in P2, while satisfying
the constraint Eq[h(x)] = 0, that is:

minimize
q∈P2(Rd)

F (q)

subject to Eq[h(x)] = 0.
(3.2)

Under standard constraint qualification assumptions (e.g., Slater’s condition), Problem 3.2 is convex
and admits a unique minimizer q? [17]. It is however an infinite-dimensional problem. To solve it,
one can use the Lagrangian and its associated dual function.
Definition 1 [Lagrangian] The Lagrangian of Problem (3.2) is defined as

L(q, λ) := F (q) + λ>Eq[h(x)] ∀q ∈ P2(Rd), λ ∈ Rm. (3.3)

Definition 2 [Dual function] The dual function of Problem 3.2 is defined as

g(λ) := inf
q∈P2(Rd)

L(q, λ), ∀λ ∈ Rm. (3.4)

The dual function g is concave, and the corresponding dual problem, consisting in maximizing g(λ),
is a finite-dimensional concave maximization problem. It provides a lower bound on the primal
value, as g(λ) ≤ F (q?) for all λ. Strong duality refers to the case of equality: sup g(λ) = F (q?).
A key property is that the infimum in (3.4) is achieved by pλ(x) ∝ e−U(x,λ), with the Lagrangian
potential U(x, λ) := f(x) + λ>h(x) Thus, optimizing g(λ) corresponds to adjusting the constraint
term added to the original potential.
Proposition 1 [Attained strong duality] Suppose that strong duality holds and is attained: there
exists λ? ∈ Rm such that g(λ?) = F (q?). Then q? is the unique minimizer of the unconstrained
problem:

minimize
q∈P2(Rd)

L(q, λ?). (3.5)

When strong duality is attained, Proposition 1 implies that sampling from q? can be obtained by
solving a finite-dimensional unconstrained problem: finding the optimal multiplier λ? and sampling
from pλ? . The Lagrange multiplier can be found by to the so-called dual ascent algorithm:

λt+1 = λt + ηEqt [h(x)], (3.6)

where qt := pλt and η is a step size [26]. Dual ascent is detailed in Algorithm 5. If Proposition 1
applies, this algorithm converges to λ? [17].

Algorithm 1 Primal-dual Langevin

input potential gradient∇f , equality constraint
function h, step sizes τ, η > 0, iteration num-
ber T , initial distribution q0

output sample xT ∈ Rd
define U(x, λ) := f(x) + λ>h(x)
initialize x0 ∼ q0, λ0 = 0 ∈ Rm
for 0 ≤ t ≤ T − 1 do

draw wt ∼ N (0, Id)

xt+1 = xt − τ∇xU(xt, λt) +
√

2τwt
λt+1 = λt + η∇λU(xt+1, λt)

end for

Primal-dual sampling In practice, the expec-
tation Eqt [h(x)] is approximated using samples
obtained via Langevin dynamics under potential
U(x, λt). This motivates a primal-dual algo-
rithm: alternating between Langevin sampling
and stochastic dual ascent on λ. This scheme,
proposed by Chamon et al. [17], is known as
primal-dual Langevin Monte Carlo and is sum-
marized in Algorithm 1. Although the primal-
dual Langevin sampling algorithm has been suc-
cessfully applied to constrained sampling prob-
lems, it only enforces the constraint in expecta-
tion, without any control on the variance. How-
ever, many physical applications require the
samples to be strictly constrained in C, as out-
lined in Section 2.
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4 Split augmented Langevin for strictly constrained sampling

In this section, we introduce a novel method for the constrained sampling problem. We propose
a variational interpretation of the constrained distribution pC , enabling us to apply the duality
framework described in Section 3. Based on this formulation, we propose a new constrained sampling
algorithm, Split Augmented Langevin (SAL), which progressively approaches pC while ensuring that
the final sample strictly satisfies the constraint.

4.1 Variational formulation of constrained sampling

Our method builds upon the following variational formulation of constrained sampling. Importantly,
we observe that the constrained distribution pC can be characterized as a projection in distribution
space of the unconstrained distribution p onto the set of distributions supported on C.
Proposition 2 Suppose that Pp(C) > 0. Then the conditional distribution pC is the projection of p
onto the set of distributions supported on C:

pC = argmin
q∈P2(Rd)

D(q‖p)

subject to Pq(C) = 1.
(4.1)

This projection problem is a particular case of I-projection [27], a classical object in information
theory. At first glance, this problem might seem amenable to the variational framework introduced
in Section 3, by expressing the support constraint as an expectation constraint Eq[1C(x)− 1] = 0.
However, the following result shows that strong duality is not attained.
Proposition 3 Strong duality holds for Problem (4.1), but is only attained for an infinite Lagrange
multiplier:

∀λ ∈ R, g(λ) < F (q?), and g(λ) −→
λ→−∞

F (q?). (4.2)

Consequently, the dual ascent algorithm introduced in Section 3 cannot converge to the solution
of (4.1). This singularity in the dual function is due to the feasible set being supported on a strict
subset of Rd. One possible relaxation is to allow a small violation probability, replacing Pq(C) = 1
by Pq(C) ≥ 1− δ for small δ > 0, this however allows unphysical states and lead to poor problem
conditioning. Instead, we propose a different variational relaxation, with strict constraint satisfaction.

4.2 Split Augmented Langevin

In order to relax the problem without compromising constraint satisfaction, we propose to split the
variable x into a pair (x, z) ∈ Rd × C, enforcing that x and z remain close while z strictly belongs
to C. We thus define a joint probability density q(x, z), with marginals qx and qz .
Proposition 4 [Variable splitting] Problem (4.1) is equivalent to the following problem:

minimize
q∈P2(Rd×C)

D(qx‖p)

subject to Pq (x = z) = 1.
(4.3)

Inspired by variable splitting techniques in optimization [28], this reformulation separates the roles
of x and z ∈ C, which are respectively maximizing likelihood and enforcing the constraint. Rather
than requiring x = z almost surely, we relax the condition to be satisfied in expectation, and penalize
the variance. Specifically, we consider the following problem:

minimize
q∈P2(Rd×C)

D(q‖p⊗ uC) +
ρ

2
Eq
[
‖x− z‖2

]
subject to Eq[x− z] = 0,

(4.4)

where uC denotes the uniform distribution on C, and the penalty parameter ρ > 0, controls the strength
the coupling. This relaxed formulation avoids the duality failure in Proposition 3 by softening the
coupling constraint between x and z. Problem 4.4 then falls under the general framework of average-
constrained sampling described in Section 3, with associated augmented Lagrangian potential:

Uρ(x, z, λ) := f(x) + χC(z) + λ>(x− z) +
ρ

2
‖x− z‖2. (4.5)
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Stochastic primal-dual updates. Given independent Gaussian noise vectors wt, w′t ∼ N (0, Id),
the stochastic updates associated with the augmented potential (4.5) are as follows:

xt+1 = xt − τ (∇f(xt) + ρ(xt − zt + µt)) +
√

2τwt (4.6a)

zt+1 = PC(xt+1 + µt +
√

2τw′t) (4.6b)
µt+1 = µt + η(xt+1 − zt+1), (4.6c)

with rescaled multiplier µ := (1/ρ)× λ. We refer to this algorithm as Split Augmented Langevin,
or SAL, and detail it in Algorithm 2. Appendix A gives a detailed derivation. The algorithm
returns zT ∈ C, and therefore strictly enforces the constraint.

Algorithm 2 Split Augmented Langevin (SAL)

input potential gradient ∇f , projection PC , step
sizes τ, η > 0, regularization ρ > 0, iteration num-
ber T , initial distribution q0

output sample zT ∈ C
initialize x0 ∼ q0, z0 = PC(x0), µ0 = 0 ∈ Rd
for 0 ≤ t ≤ T − 1 do

draw wt, w
′
t ∼ N (0, Id)

xt+1 = xt−τ∇f(xt)−τρ(xt−zt+µt)+
√

2τwt
zt+1 = PC(xt+1 + µt +

√
2τw′t)

µt+1 = µt + η(xt+1 − zt+1)
end for

Connection with optimization algo-
rithms The update formulas (4.6) are
similar to the Alternating Direction Method
of Multipliers (ADMM) [29], widely used
in constrained optimization. Here, the vari-
ables x and z play the role of the primal
variables in ADMM and λ the dual, and
the stochastic augmented potential (4.5)
plays the role of an augmented Lagrangian.
Our sampling can thus be seen a stochas-
tic noisy analog of ADMM in sample
space Rd, just like Langevin Monte Carlo
is an analog to the gradient descent mini-
mization algorithm. However, it is impor-
tant to note that our algorithm differs from the ADMM algorithm applied directly to Problem (4.1)
in distribution space P2(Rd): our method operates on coupled samples rather than on probability
distributions.

4.3 Convergence analysis

We now provide theoretical support for the proposed scheme. Proofs can be found in Appendix B.
First, we prove that strong duality holds and is attained for the relaxed problem, thus ensuring the
convergence of the dual ascent algorithm.
Proposition 5 [Attained duality] Strong duality holds and is attained for Problem (4.4).
Corollary 1 [Convergence guarantee] The dual ascent algorithm converges for Problem (4.4).

Corollary 1 guarantees that our relaxation leads to a well-behaved iterative algorithm. Moreover, the
relaxed problem recovers the original projection in the limit of infinite coupling.
Proposition 6 [Recovery of the projection] Let qρ denote the solution to (4.4). Then

qρx, q
ρ
z

law−→
ρ→+∞

pC . (4.7)

Thus, larger values of ρ bring the samples closer to the constrained distribution, while smaller values
encourage exploration.

These results support SAL as an efficient and principled method for sampling from constrained
distributions.

4.4 Practical implementation and deep generative models

Implementation in diffusion models Our proposed algorithm is a constrained variant of Langevin
Monte Carlo, which plays a central role in many generative frameworks, including energy-based
models, and diffusion models [8–11]. The split-augmented update (4.6) can be used as a drop-in
replacement for standard Langevin steps, without modifying other components of the sampler such as
the noise schedule or predictor architecture. This makes constraint enforcement simple and modular.
Crucially, we leverage the connection between Langevin dynamics and diffusion models [1] to
propose SAL as a zero-shot constrained sampling algorithm for pre-trained diffusion models. This
parallel has already been exploited by Christopher et al. [14] to introduce projected diffusion models.
Appendix D discusses this connection in more detail.
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Constraint satisfaction Our algorithm applies to arbitrary constraint sets, provided that an approx-
imate projection operator is available. In the case of multiple constraints, the projection step can
be approximated using alternating projections [30]. Importantly, it does not require a differentiable
expression of the constraints. The coupling parameter ρ, controlling the trade-off between conver-
gence and exploration, can be tuned or progressively increased along the diffusion process to tighten
constraint enforcement over time.

Computational cost In physical applications, the computational burden of learning-based methods
is critical, as their main goal is to accelerate expensive simulations. Compared to unconstrained
diffusion, our method adds the cost of a projection operation at each step, as does projected diffusion.
The cost of this step depends on the constraint set, and generally amounts to solving a (possibly
non-convex) constrained optimization problem. Nonetheless, efficient numerical methods such as
augmented Lagrangian algorithms can be used to solve the projection step, and are amenable to
parallelization [29, 31].

5 Application to physics-preserving generative modeling

We evaluate SAL on three scientific generative modeling tasks where physical constraints play
a critical role. Our code is available at https://github.com/MB-29/constrained-sampling. We
apply SAL to diffusion models as described in 4.4.

Baselines Our sampling algorithm is compared with the unconstrained Langevin algorithm and
the projected Langevin algorithm and their diffusion analogs. Additionally, when the constraints are
defined by equalities, we implement primal-dual Langevin of Chamon et al. [17] (Algorithm 1). All
methods share the same score function, and differ only in how they incorporate constraints.

5.1 Bimodal field generation with prescribed energy

Figure 1: Snapshot
of the sampled field.

We first validate our method in a controlled setting where the constrained
distribution pC can be accurately estimated. We consider a two-dimensional
field, representing for instance a fluid (see Figure 1), discretized on a 100×
100 grid. A generative model samples from the equilibrium distribu-
tion p. A key macroscopic quantity is the kinetic energy, 1

2‖x‖22, which
often remains conserved and is known in advance in physical prediction
tasks. The task is to sample from the conditional distribution under a
fixed energy 1

2‖x‖22 = E, a non-convex constraint (see Example 2.1).

projected

target

SALunconstrained
primal-dual

−3 0 3
mode

Figure 2: Empirical his-
tograms for the first mode.

Experimental setup The distribution p is bimodal in Fourier space,
with asymmetric modes on the first Fourier coefficient: one positive
and concentrated, the other negative and wider, allowing higher energy.
The unconstrained distribution is analytically known, and is sampled
with the Langevin Monte Carlo algorithm, and pC is estimated via
rejection sampling. Although simple enough for exact comparison, the
bimodal nature of p makes the exploration challenging. We condition
on a high energy level, only achievable via the negative mode. As
the positive mode cannot satisfy the energy constraint, the correct
conditional distribution concentrates on the negative mode, and we can
easily compare it to the generated samples. For each method, 1000
independent chains are run and the last iterate is collected. We compute
histograms of the first Fourier coefficient for evaluation.

Results Figure 2 shows the results. Only SAL matches pC closely. Projected Langevin satisfies the
constraint exactly but fails to explore, yielding many samples in the wrong mode. This example shows
that closest distribution satisfies the constraint on average, sampled by the primal-dual algorithm,
does not match pC . These results demonstrate that SAL enforces hard constraints while retaining
enough exploration to correctly sample the conditional distribution.
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Figure 3: Left Data assimilation sampled states and reanalysis. The black crosses represent the
observations. Right Averaged relative error.

5.2 Physically-constrained data assimilation

Data assimilation, a central problem in geophysics, aims to estimate the state of a dynamical
system from sparse, noisy observations using prior knowledge. Recent work applies deep generative
architectures to this task [32–35], but these models do not enforce physical invariants, such as energy
or mass conservation, which are essential for physical plausibility in long-term forecasting. We
study physically-constrained generative models for data assimilation on the Burgers equation, a
1D reduction of the Navier-Stokes equations with conserved mass and energy that exhibits rich
dynamics and complex multiscale behaviors similar to turbulence [36]. Appendix E.1 gives additional
background.

Experimental setup We perform cyclic data assimilation on the Burgers equation discretized on a
200-point spatial grid. The ground truth trajectory evolves from a random initial condition over a
time horizon H = 8. Observations are sparse: the system is observed at 10 equally spaced times,
with 4 noisy spatial measurements at fixed, evenly spaced locations. Each method runs for 5 cycles
per trajectory, producing a predicted trajectory that can be compared to the ground truth. The first
baseline is 3D-Var [37], which estimates the state with a Gaussian posterior. We compare 3D-Var to
deep generative models by training a diffusion model offline on a dataset of trajtories, without any
conditioning. At sampling time, diffusion is combined with the Gaussian posterior, which conditions
sampling to the available information. For each cycle, the analysis is computed as the average of 5
diffusion posterior samples. The experiment is repeated on 50 independent trajectories. We compute
the average mean squared error with respect to the ground truth in the state space, in `2 norm, and in
the constraint space, where the constraint violation error is the sample average of h2(x) for constraint
function h. All methods share the same forecast model.

Results Figure 3 shows selected assimilated states and averaged error curves. In this under-observed
setting, the diffusion prior helps to reconstruct the structure of complex states better than the Gaussian
prior, especially for longer times, where the system shows a stiffer structure. However, unconstrained
diffusion drifts away from the true trajectory, with significant deviations in both mass and energy.
The projected diffusion method strictly enforces constraints but introduces high-frequency artifacts,
leading to physically implausible states. Our algorithm SAL achieves the best compromise: it respects
conservation and guides sampling toward physically plausible states, resulting in significantly lower
estimation error. These results highlight the potential of constrained generative modeling for robust
data assimilation in physical systems.

5.3 Constrained trajectory priors for feasibility problems in optimal control

As a final application, we evaluate SAL on a feasibility problem in optimal control: find trajectories
that satisfy both system dynamics and non-convex obstacle avoidance constraints. These problems
are hard due to the non-convexity of obstacle regions. We consider a linear dynamical system with
state y(s) and control u(s), with s the physical time, and define a trajectory as x := (y(s), u(s))s.
Dynamics are encoded via the linear constraint set

Cd := {x | y(0) = 0, ÿ(s) = ay(s) + bu(s), |u(s)| ≤ umax}, (5.1)

while obstacle constraints define Co := {x | y(si) /∈ Oi} for disjoint times si and obstacle regionsOi.
The goal is to find trajectories in the intersection Cd ∩ Co.
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For this task, ADMM [38] is a classical solver alternating projections onto Cd and Co. But when Co
is non-convex, its convergence can be compromised. Instead, we propose to guide ADMM with
samples from a generative prior: a diffusion model trained on dynamics-respecting trajectories,
with constraints enforced at sampling. This approach has seen promising results in control and
robotics [31, 39].

Experimental setup We consider a 1D linear system subject to a linear restoring force, controlled
in acceleration. A diffusion model is trained on a dataset of obstacle-free trajectories, obtained with
a variety of random periodic excitations. At test time, a non-convex obstacle is introduced. The
corresponding constraint is imposed during sampling. In order to avoid the obstacle, the algorithm
needs to find a swinging trajectory, taking momentum then switching direction. Each sampled
trajectory is then used to initialize ADMM, and we record the fraction of samples for which a feasible
solution is found.

projected SALunconstrainedobstacle

time
−2

0

2

p
os

it
io

n

0.25 0.5 1
r

0

1
success

Figure 4: Left Dashed lines are sampled trajec-
tories, sampled lines are the projections onto the
feasibility set. Right Feasibility success rates for
different obstacle sizes.

Results Figure 4 shows some sampled trajec-
tories and success rates as the obstacle sizes r in-
creases, computed over 1000 samples. Figure 4
shows example trajectories and success rates as
obstacle difficulty (parameter r) increases. With-
out constraint-aware sampling, ADMM often
fails. Projected diffusion avoids obstacles but
distorts dynamics, producing unrealistic paths.
SAL balances both aspects: it produces obstacle-
avoiding trajectories that remain dynamically
feasible, leading to significantly higher success.

6 Related work

Early work on constrained sampling adapted methods from classical optimization to Langevin
dynamics, such as Projected Langevin Monte Carlo [12, 13], proximal Monte Carlo [20, 40–42],
Mirrored Langevin [16, 43, 44], and penalized Langevin 45. Some of these approaches have been
extended to diffusion models [14, 15]. While there methods benefit convergence guarantees in the
convex case where imposing constraints does not impair exploration, they are less practical in non-
convex settings, such as those encountered in our applications to physical systems. The variational
formulation of Langevin Monte Carlo is leveraged by Salim and Richtarik [41] and Chamon et al.
[17], where constraints are imposed only on average.

Sampling methods using variable splitting have recently been proposed for another type of problem:
Bayesian posterior sampling [46] and, more recently, in plug-and-play generative solvers for inverse
problems [47–49].

Physical constraints have been enforced on black-box deterministic neural networks [50, 51]. In
another line of work, Cheng et al. [52] introduce a sampling algorithm that integrates a projection
onto the feasibility set within a flow-matching framework, which is connected to but different from
Langevin dynamics. Meunier et al. [53] propose to impose soft constraints into diffusion models for
physically plausible ocean modeling.

7 Conclusion

We introduced a new sampling algorithm for constrained generative modeling, designed to enforce
hard constraints while preserving exploration. Our method, Split Augmented Langevin (SAL), builds
on a variational reformulation of conditional sampling and leverages primal-dual updates in a relaxed
space where strict constraint satisfaction is progressively enforced. Unlike projection-based methods,
which may severely distort sampling dynamics, SAL maintains fidelity to the target distribution
while guaranteeing that all samples lie in the constraint set. The algorithm is modular and can be
integrated into existing Langevin-based or diffusion-based samplers without retraining, and with
minimal assumptions on the constraints. Through experiments on physical systems, including data
assimilation and optimal control, we demonstrated that SAL improves constraint enforcement and
predictive accuracy. These results open promising directions for combining generative models with

9



physical reasoning in scientific applications, where respecting conservation laws and feasibility
constraints is crucial.

The limitations of our work include the computational cost induced by projecting the iterates, which,
depending on the constraint, can further slow down generative models, and the choice of the coupling
parameter ρ, which we found to have an impact on the results, as it does for ADMM.

It would be interesting to generalize the variational framework to other generative models, such as
stochastic interpolants [54], and to other constraints, such as noisy observations. Another important
research direction would be the finite-time convergence analysis of SAL, following the method
of [17].
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[26] Andrzej Ruszczyński. Constrained Optimization of Differentiable Functions, pages 286–342.
Princeton University Press, 2006. ISBN 9780691119151. URL http://www.jstor.org/
stable/j.ctvcm4hcj.9.

[27] Imre Csiszár. I-divergence geometry of probability distributions and minimization problems.
The annals of probability, pages 146–158, 1975.

[28] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.
Foundations and Trends® in Machine Learning, 3(1):1–122, 2011. ISSN 1935-8237. doi:
10.1561/2200000016. URL http://dx.doi.org/10.1561/2200000016.

[29] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine learning, 3(1):1–122, 2011.

[30] L.M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967. ISSN 0041-5553. doi: https://doi.
org/10.1016/0041-5553(67)90040-7. URL https://www.sciencedirect.com/science/
article/pii/0041555367900407.

[31] Yorai Shaoul, Itamar Mishani, Shivam Vats, Jiaoyang Li, and Maxim Likhachev. Multi-Robot
Motion Planning with Diffusion Models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=AUCYptvAf3.

[32] Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter D. Dueben, and Torsten Hoefler. DiffDA:
a diffusion model for weather-scale data assimilation. Proceedings of the 41st International
Conference on Machine Learning, 2024.

[33] François Rozet and Gilles Louppe. Score-based data assimilation. Advances in Neural Informa-
tion Processing Systems, 36:40521–40541, 2023.

[34] Yongquan Qu, Juan Nathaniel, Shuolin Li, and Pierre Gentine. Deep generative data assimilation
in multimodal setting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 449–459, 2024.

[35] Matthieu Blanke, Ronan Fablet, and Marc Lelarge. Neural Incremental Data Assimilation. In
ICML 2024 AI for Science Workshop, 2024.

12

http://www.jstor.org/stable/j.ctvcm4hcj.9
http://www.jstor.org/stable/j.ctvcm4hcj.9
http://dx.doi.org/10.1561/2200000016
https://www.sciencedirect.com/science/article/pii/0041555367900407
https://www.sciencedirect.com/science/article/pii/0041555367900407
https://openreview.net/forum?id=AUCYptvAf3


[36] T. van Gastelen, W. Edeling, and B. Sanderse. Energy-conserving neural network for turbulence
closure modeling. Journal of Computational Physics, 508:113003, 2024. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2024.113003. URL https://www.sciencedirect.com/
science/article/pii/S0021999124002523.

[37] Philippe Courtier, E Andersson, W Heckley, D Vasiljevic, M Hamrud, A Hollingsworth,
F Rabier, M Fisher, and J Pailleux. The ecmwf implementation of three-dimensional variational
assimilation (3d-var). i: Formulation. Quarterly Journal of the Royal Meteorological Society,
124(550):1783–1807, 1998.

[38] Zuzana Bílková and Michal Šorel. Projection methods for finding intersection of two convex
sets and their use in signal processing problems. Electronic Imaging, 33:1–6, 2021.

[39] Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning
diffusion: Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1916–1923. IEEE,
2023.

[40] Adil Salim, Dmitry Kovalev, and Peter Richtárik. Stochastic proximal Langevin algorithm:
Potential splitting and nonasymptotic rates. Advances in Neural Information Processing Systems,
32, 2019.

[41] Adil Salim and Peter Richtarik. Primal dual interpretation of the proximal stochastic gradient
Langevin algorithm. Advances in Neural Information Processing Systems, 33:3786–3796, 2020.

[42] Alain Durmus, Eric Moulines, and Marcelo Pereyra. Efficient bayesian computation by proximal
Markov chain Monte Carlo: when Langevin meets Moreau. SIAM Journal on Imaging Sciences,
11(1):473–506, 2018.

[43] Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored Langevin dynamics.
Advances in Neural Information Processing Systems, 31, 2018.

[44] Louis Sharrock, Lester Mackey, and Christopher Nemeth. Learning rate free bayesian inference
in constrained domains. In NeurIPS, 2023.

[45] Mert Gurbuzbalaban, Yuanhan Hu, and Lingjiong Zhu. Penalized Overdamped and Under-
damped Langevin Monte Carlo Algorithms for Constrained Sampling. Journal of Machine
Learning Research, 25(263):1–67, 2024.

[46] Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. Split-and-Augmented Gibbs Sam-
pler—Application to Large-Scale Inference Problems. IEEE Transactions on Signal Processing,
67(6):1648–1661, 2019. doi: 10.1109/TSP.2019.2894825.

[47] Charles A Bouman and Gregery T Buzzard. Generative plug and play: Posterior sampling for
inverse problems. In 2023 59th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1–7. IEEE, 2023.

[48] Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine Bouman. Princi-
pled probabilistic imaging using diffusion models as plug-and-play priors. Advances in Neural
Information Processing Systems, 37:118389–118427, 2024.

[49] Ségolène Martin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl. PnP-Flow: Plug-and-
play image restoration with flow matching. arXiv preprint arXiv:2410.02423, 2024.

[50] Geoffrey Négiar, Michael W. Mahoney, and Aditi Krishnapriyan. Learning differentiable solvers
for systems with hard constraints. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vdv6CmGksr0.

[51] Derek Hansen, Danielle C Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W Mahoney.
Learning physical models that can respect conservation laws. In International Conference on
Machine Learning, pages 12469–12510. PMLR, 2023.

[52] Chaoran Cheng, Boran Han, Danielle C Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W
Mahoney, and Bernie Wang. Gradient-Free Generation for Hard-Constrained Systems. In The
Thirteenth International Conference on Learning Representations, 2024.

13

https://www.sciencedirect.com/science/article/pii/S0021999124002523
https://www.sciencedirect.com/science/article/pii/S0021999124002523
https://openreview.net/forum?id=vdv6CmGksr0


[53] Etienne Meunier, David Kamm, Guillaume Gachon, Redouane Lguensat, and Julie Deshayes.
Learning to generate physical ocean states: Towards hybrid climate modeling. arXiv preprint
arXiv:2502.02499, 2025.

[54] Michael Samuel Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic
Interpolants. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=li7qeBbCR1t.

[55] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in
the space of probability measures. Springer Science & Business Media, 2008.

[56] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dy-
namics. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

[57] Diederik P Kingma, Max Welling, et al. Auto-encoding Variational Bayes, 2013.

[58] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[59] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE proceedings F (radar and signal processing),
volume 140, pages 107–113. IET, 1993.

[60] Geir Evensen. The ensemble Kalman filter: Theoretical formulation and practical implementa-
tion. Ocean dynamics, 53:343–367, 2003.

[61] Yoshikazu Sasaki. Some basic formalisms in numerical variational analysis. Monthly Weather
Review, 98(12):875–883, 1970.

[62] Andrew C Lorenc. Analysis methods for numerical weather prediction. Quarterly Journal of
the Royal Meteorological Society, 112(474):1177–1194, 1986.

[63] Toby van Gastelen, Wouter Edeling, and Benjamin Sanderse. Energy-conserving neural network
for turbulence closure modeling. Journal of Computational Physics, 508:113003, 2024.

14

https://openreview.net/forum?id=li7qeBbCR1t


Acknowledgments We thank Carla Roesch, Luiz Chamon and Anna Korba for their insightful
feedback on this work. The authors acknowledge funding, computing, and storage resources from
the NSF Science and Technology Center (STC) Learning the Earth with Artificial Intelligence and
Physics (LEAP) (Award #2019625).

15



Societal impact This work aims to improve the integration of physical constraints into generative
modeling algorithms, with potential applications in scientific computing, forecasting, and control. By
enabling the generation of physically consistent samples, our method may contribute to more reliable
simulations in fields such as climate science, fluid dynamics, or robotics. We do not foresee any direct
negative societal impacts associated with this research. The approach does not involve the collection
or use of personal data, nor does it introduce mechanisms for surveillance or manipulation. Its
intended applications are primarily in scientific and engineering domains, and we believe it promotes
trustworthy modeling practices.

A Algorithms

A.1 Detailed algorithms

Algorithm 3 Langevin Monte Carlo

input potential gradient∇f , step size τ , itera-
tion number T
output sample xT
initialize x0 ∼ q0

for 0 ≤ t ≤ T − 1 do
wt ∼ N (0, Id)

xt+1 = xt − τ∇f(xt) +
√

2τwt
end for

Algorithm 4 Projected Langevin Monte Carlo

input potential f(x), projection PC , step
size τ , iteration number T
output sample xT ∈ C
initialize x0 ∼ q0

for 0 ≤ t ≤ T − 1 do
wt ∼ N (0, Id)

xt+1 = zt − τ∇f(zt) +
√

2τwt
zt+1 = PC(xt+1)

end for

Algorithm 5 Dual ascent

input constraint function h,
dual step size η > 0, iteration
number T
output sample xT
initialize x0 ∈ Rd, λ0 ∈ Rm
for 0 ≤ t ≤ T − 1 do

qt = argmin
q∈P2(Rd)

L(q, λt).

λt+1 = λt + ηEqt [h(x)]
end for

Algorithm 6 Time-dependent SAL

input time dependent potential gradient f(x, t), iteration num-
ber T ,time-dependent step sizes τt, projection PC , step size
η > 0, regularization ρ > 0, intial distribution q0

output sample zT ∈ C
initialize x0 ∼ q0 , z0 = PC(x0) , µ0 = 0 ∈ Rd
for 0 ≤ t ≤ T − 1 do

draw wt, w
′
t ∼ N (0, Id)

xt+1 = xt − τt∇f(xt, t)− τtρ(xt − zt + µt) +
√

2τtwt
zt+1 = PC(xt+1 + µt +

√
2τtw

′
t)

µt+1 = µt + η(xt+1 − zt+1)
end for

A.2 Projected Langevin

Projected Langevin consists in applying Langevin dynamics to the constrained potential fC , However,
since fC is non-smooth, its gradient is not defined. This issue can be addressed using the proximal
operator:

proxϕ(x) := argmin
z∈Rd

1

2
‖z − x‖2 + ϕ(z). (A.1)

An important case for non-smooth functions is the proximal operator of the characteristic function χC ,
which is the projection onto C:

PC(x) := proxχC (x). (A.2)

When well-defined, the proximal operator generalizes the gradient step of a smooth func-
tion ϕ in the sense that proxτϕ(x) = x − τ∇ϕ(x). Applying the proximal step associ-
ated with τfC to the noisy iterate xt +

√
2τwt yields the so-called Projected Langevin itera-

tion xt+1 = PC(xt − τ∇f(xt) +
√

2τwt). The corresponding constrained sampling algorithm is
the Projected Langevin Algorithm [20], which we detail in Algorithm 4.
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Figure 5: Projected Langevin Algorithm.

Limited exploration Figure 5 shows the exploration issue arising with Projected Langevin Monte
Carlo in the case of non-convex constraints and a bi-modal distribution. Here, projecting on the
constraint set C = {x | 1

2‖x‖2 = E} leads to poor exploration, as the samples are suck on the
positive side of the likelihood landscape, while the only high-likelihood zone compatible with the
constraint is on the other side.

A.3 Derivation of the Split-augmented sampling formulas

Recall the augmented Lagrangian potential

Uρ(x, z, λ) := f(x) + χC(z) + λ>(x− z) +
ρ

2
‖x− z‖2, (A.3)

and let µ = (1/ρ)λ. Taking a stoachastic gradient step with respect to x yields

xt+1 = xt − τ (∇f(xt) + ρ(xt − zt + µt)) +
√

2τwt (A.4)

Taking a stoachastic proximal step with respect to z yields

zt+1 = PC(xt+1 + µt +
√

2τw′t) (A.5)

Taking a stoachastic gradient step with respect to λ yields

µt+1 = µt + η(xt+1 − zt+1). (A.6)

A.4 Connection with Split-and-Augmented Gibbs samplers

The constrained sampling formulas of SAL are related to the Split-and-Augmented Gibbs samplers
of Vono et al. [46], which themselves are inspired by ADMM. The main difference is that, z represents
a smooth, prior distribution in their case, while it represents hard constraints in our case. Therefore,
the framework developed in [46] is different from the constrained sampling approach developed
in our present work, and Split-and-Augmented Gibbs samplers cannot be applied to enforce strict
constraints in deep generative models for example.
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B Proofs

B.1 Proof of Proposition 1

The proof can be found in [17].

B.2 Proof of Proposition 2

Proposition Suppose that Pp(C) > 0. Then the conditional distribution pC is the projection of p
onto the set of distributions supported on C:

pC = argmin
q∈P2(Rd)

D(q‖p)

subject to Pq(C) = 1.
(B.1)

Proof. Let q ∈ P2(Rd) such that Pq(C) = 1. Then q vanishes almost everywhere out of C. Hence,

D(q‖p) =

∫
C
q(x) log

q(x)

p(x)
dx

=

∫
C
q(x) log

(
q(x)

pC(x)

ZC
Z

)
dx

= D(q‖pC) +
ZC
Z

(B.2)

where ZC satisfies

1 =

∫
Rd
pC

=
Z

ZC

∫
C
p(x)dx

=
Z

ZC
Pp(C).

(B.3)

Therefore,
D(q‖p) = D(q‖pC) + Pp(C). (B.4)

This quantity is minimized for q = pC , and the minimal value is Pp(C).

B.3 Proof of Proposition 3

Proposition Consider the following problem:

pC = argmin
q∈P2(R2)

D(q||p)

subject to Pq(C) = 1,
(B.5)

and recall that F (q) = D(q||p) and

g(λ) := inf
q∈P2(Rd)

L(q, λ). (B.6)

Strong duality holds, but is attained only for an infinite Lagrange multiplier:

∀λ ∈ R, g(λ) < F (q?), and g(λ) −→
λ→−∞

F (q?). (B.7)

Proof.
L(q, λ) = D(q||p) + λ (Pq(x ∈ C)− 1)

= D(q||p) + λEq[1C(x)− 1].
(B.8)

Let h(x) = 1C(x)− 1. For all λ ∈ R, the infimum in the dual function definition, attained by

pλ(x) =
1

Zλ
e−f(x)−λh(x)

=
Z

Zλ
p(x)e−λh(x)

(B.9)
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and is equal to

g(λ) = log
Z

Zλ
. (B.10)

Note that
1 =

∫
Rd
pλ

=
Z

Zλ

∫
C
p(x)dx+

Z

Zλ
eλ
∫
C̄
p(x)dx

=
Z

Zλ

[
Pp(C) + eλ(1− Pp(C))

]
,

(B.11)

which gives

g(λ) = log
1

Pp(C) + eλ(1− Pp(C))
. (B.12)

This value is always strictly lower than its limit:

∀λ, g(λ) < log
1

Pp(C)
= lim
λ→+∞

g(λ), (B.13)

which is precisely the optimal value of Problem (4.1), attained by q = pC . Indeed,

D(pC ||p) =

∫
C

Z

ZC
p(x) log

Z

ZC
dx

= Pp(C)
Z

ZC
log

Z

ZC
,

(B.14)

where ZC satisfies

1 =

∫
Rd
pC

=
Z

ZC

∫
C
p(x)dx

=
Z

ZC
Pp(C).

(B.15)

It follows that
D(pC ||p) = log

1

Pp(C)
. (B.16)

This value is found to be the minimizer of Problem (4.1) using Gibbs’ inequality.

B.4 Proof of Proposition 4

Proposition 7 [Variable splitting] Problem (4.1) is equivalent to the following problem:
minimize
q∈P2(Rd×C)

D(qx‖p)

subject to Pq (x = z) = 1.
(B.17)

Proof. Given q(x, z) the solution of Problem (4.3), the marginal qx gives the solution of Prob-
lem (4.1). Given q(x) the solution of Problem (4.1), the solution of Problem (4.3) can be obtained by
defining z as a copy of x.

B.5 Proof of Proposition 5

Proposition 8 [Attained duality] Strong duality holds and is attained for Problem (4.4).

Proof. In order to apply Proposition 2.2 from Chamon et al. [17], we verify the required assumption:
there exists q > 0, such that Eq[x − z] = 0 (positivity ensures constraint qualification). Such
distribution can be obtained by defining q(x, z) := q(x)q(z|x), with for example q(x) a Gaussian
normal density and q(z|x) a Gaussian density centered on x. Then, the aforementioned proposition
can be applied and Proposition 5 follows. This result cannot be applied to Problem (4.1) because the
feasibility set for q imposes that the density has zeros measure out of C, making the non-negativity
constraint of the density not qualified.
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B.6 Proof of Proposition 6

Recall the relaxed problem

minimize
q∈P(Rd×C)

D(q||p⊗ uC) + ρVq [x− z]

subject to Eq[x− z] = 0.
(B.18)

Proposition [Problem approximation] The ρ-approximation converges to the strictly constrained
problem, as

qρ
law−→

ρ→+∞
pC .

Proof of Proposition 6. Recall that, because strong duality is attained, the solution of (4.4) is attained
by a distribution of the form

qρ(x, z) =
1

Zλ
e−f(x)e−χC(z)e−

ρ
2 ‖x−z‖

2

e−λ
>(x−z) (B.19)

Let z ∈ C and x 6= z in Rd. Then, qρ(x, z) −→
ρ→+∞

0 = p2
C(x, z).

Additionally,

qρ(z, z) =
1

Zλ
e−f(z) (B.20)
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C Variational framework for Langevin Monte Carlo

Consider the functional
F (q) = D(q‖p) =

∫
q log(q/p). (C.1)

The Wasserstein gradient flow is defined as the following differential system

∂q

∂t
= ∇ ·

(
q∇∂F

∂q

)
, (C.2)

For functional (C.1), the differential system is found to be

∂q

∂t
= ∇ · (q∇f(x)) + ∆q(x, t), (C.3)

which is found to be the Fokker-Planck equation for the Langevin dynamics

dx = −∇f(x)dt+ dB. (C.4)

More details can be found in [17, 23, 24, 55].
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D Connection between Generative Models and Langevin Sampling

Many modern generative frameworks—from energy-based models to state-of-the-art diffusion mod-
els—rely on Langevin dynamics for sampling. In this appendix we briefly review how key classes of
generative models relate to Langevin updates.

For these generative models, we will see that sampling takes the form

xt+1 = xt − τt∇f(xt, t) +
√

2τt wt, wt ∼ N (0, I). (D.1)

We interpret these steps as the discretization of a Wasserstein flow for a time-dependent func-
tional F (x, t), where the derivation is identical as what is presented in Appendix C. We can then
identically apply our constrained sampling algorithm, as a time-dependent variation of Algorithm 2,
detailed in Algorithm 6. From a variational point of view, this results in framing the constrained
sampling as a time-varying constrained optimization problem.

D.1 Energy-Based Models (EBMs)

An EBM defines a density

p(x) =
1

Z
exp
(
−fθ(x)

)
, (D.2)

where fθ is a learned energy function. Sampling from p typically relies on Langevin dynamics (2.1)
or stochastic gradient Langevin dynamics (SGLD) [56]. EBMs with Langevin sampling have demon-
strated strong performance across a range of tasks[9], and offer distinct advantages over methods
such as Variational Autoencoders (VAEs)[57] and Generative Adversarial Networks (GANs)[58]. A
particularly valuable property of EBMs is their flexibility in incorporating constraints via summing
up the corresponding energies. From this perspective, our algorithm, when applied to EBMs, can be
interpreted as providing stronger constraint enforcement through an augmented Lagrangian potential
and corresponding proximal Langevin updates—going beyond the simple addition of constraint
energies.

D.2 Score-Based Generative Models

Score-based generative models aim to learn the score function∇ log pt(x) of a family of progressively
noised data distributions {pt}t∈[0,T ], rather than modeling the data density directly. Once the score
is learned—typically via denoising score matching—samples can be generated by Langevin-type
updates.

Annealed Langevin Dynamics Proposed by Song and Ermon [10], this method generates samples
by applying Langevin dynamics at a sequence of decreasing noise levels σT > · · · > σ1. A score
model sθ(x, σ) is trained to approximate the noise-dependent score ∇x log q(x;σ) of the perturbed
data distribution p(x;σ), which is obtained by convolving p(x) with a Gaussian of various noise level
σt. Then update step takes the form

xt+1 = xt + τt sθ(x, σt) +
√

2τt wt, wt ∼ N (0, I), (D.3)

where τt ∝ σ2
t are time-varying step sizes. The update takes the form of (D.1)

with ∇f(x, t) = −sθ(x, σt). This can be seen as an unadjusted Langevin algorithm with tem-
perature σt, gradually refining the sample as noise decreases. In this case our algorithm can be
directly applied at each noise level to impose constraints. It is worth noting that the projected
diffusion model [14] also falls into this category – a hard projection following each Langevin update
within the annealed Langevin dynamics framework. Note that this covers the case where several
Langevin steps are taken at fixed noise level, as in the work of Song and Ermon [10], by choosing τt
to be constant for a number of steps t.

D.3 Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) Denoising diffusion probabilistic mod-
els (DDPMs), introduced by Ho et al. [1], define a forward process that gradually corrupts a data
point y0 by adding Gaussian noise through a fixed Markov chain:

q(yt | yt−1) = N (yt;
√

1− βt yt−1, βtI), (D.4)
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where βt ∈ (0, 1) is a small noise schedule. This leads to a closed-form expression for q(xt | x0),
with the following definitions:

αt = 1− βt, ᾱt =

t∏
s=1

αs. (D.5)

The reverse process is parameterized by a neural network εθ(xt, t), which predicts the noise compo-
nent. The sampling procedure follows:

xt+1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
+ σtw, wt ∼ N (0, I), (D.6)

where σt is typically set to match the forward variance βt. As noted by Ho et al. [1], this step
corresponds to an Euler-Maruyama discretization of a variant of Langevin dynamics, and the learned
noise predictor εθ implicitly estimates the score ∇ log pt(x) up to a scaling factor. Hence, the
sampling formula (D.6) takes the form (D.1) with τt = σ2

t /2 and

∇ log pt(xt) ≈ sθ(xt, t) = − 1√
1− ᾱt

εθ(xt, t). (D.7)

The DDPM can be regarded as a discrete score-based model under the variance preserving stochastic
differential equation (VP-SDE) interpretation [11], and thus our SAL sampling is valid for DDPM
sampling.

D.4 Score-based Diffusion Models

Score-based diffusion models [11] directly learn the score function of perturbed data distributions
and generate samples by simulating the reverse-time stochastic dynamics.

Forward SDE. Define a forward Itô SDE that gradually adds noise to data x0 ∼ pdata:

dx = a(x, t) dt + b(t) dWt, (D.8)

where for the variance-preserving (VP) choice,

a(x, t) = − 1
2 β(t)x, b(t) =

√
β(t). (D.9)

This yields marginal distributions pt(x) that interpolate between the data and near-Gaussian noise as
t increases.

Reverse SDE. The time-reversed process follows

dx =
[
a(x, t)− b(t)2∇x log pt(x)

]
dt + b(t) dW ′t , (D.10)

where W ′t is a reverse-time Wiener process. A neural network sθ(x, t) is trained by score matching
to approximate∇x log p(x, t).

Predictor–Corrector sampling. Once the score network is trained, our SAL sampling is applicable.
SAL can also be integrated seamlessly into the predictor-corrector sampling scheme proposed by
Song et al. [11]. The predictor-corrector sampler interleaves:

• Predictor: an Euler–Maruyama step of the reverse SDE,

xt+1 = xt − τt
[
a(xt, t)− b(t)2 sθ(xt, t)

]
+ b(t)

√
2τtwt wt ∼ N (0, Id). (D.11)

• Corrector: a few steps of Langevin MCMC to refine samples,

xt+1 = xt + τt sθ(xt, t) +
√

2τtwt, wt ∼ N (0, Id). (D.12)

Similar to the previous sections, these formulas take the form of (D.1), with different time-varying
potential gradients∇f(x, t).

Summary Across EBMs, diffusion models, and hybrid schemes, the core sampling formula is an
overdamped Langevin update, possibly annealed through noise scales. This makes our constrained
sampling algorithm SAL compatible with all these approaches as a zero-shot plug-in.
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E Experimental details

E.1 Data Assimilation

Context In many geophysical and engineering applications, one relies on numerical simulation to
predict the time-dependent evolution of a complex system, whose state at physical time t is denoted
by x ∈ Rd. But these models are inherently imperfect—either because of computational constraints
or incomplete knowledge of the true dynamics. When real-world observations y ∈ Rm become
available (for example in digital-twin settings), we assume a statistical model of the form

y = h(x) + ε, (E.1)

where h : Rd → Rm is an observation operator and ε is the measurement error. The imperfect
simulation yields a prior forecast b ∈ Rd, the background estimate, which must be adjusted using y
to produce a more accurate estimate of the true state, usually referred to as the analysis, as the initial
condition for the next simulation. Equivalently, one seeks samples from the posterior

p(x | b, y) ∝ p(y | x) p(x | b). (E.2)

This estimation problem is formulated sequentially for each new observation, by propagating the
obtained posterior analysis with a forecast model, and repeating the process. Classically, this is
achieved by one of three approaches: sequential Monte Carlo methods (e.g. particle filters [59]),
ensemble-based filters (e.g. the Ensemble Kalman Filter [60]), or variational methods that solve for
the MAP estimate (e.g. 3D-Var/4D-Var [61, 62]). The 3D-Var algorithm assumes that the background
error distribution and observation error distribution are Gaussian,

x | b ∼ N (b, B), ε ∼ N (0, P ), (E.3)

then taking negative logarithm of (E.2) yields the following optimization target:

J(x) = 1
2

∥∥y − h(x)
∥∥2

P−1 + 1
2

∥∥x− b∥∥2

B−1 . (E.4)

Data For simulating the Burgers equation, we implemented the same method as van Gastelen et al.
[63], but we added an extra constant linear advection term. We work in Fourier space with the first
20 Fourier modes. The field evolves according to the Burgers equation for 4 time units. We generate
1,000 trajectories, with the field recorded at 10 timesteps for each trajectory, with the initial state
drawn at random in Fourier space with a power-law decay of the coefficient magnitude.

Learning architecture We implemented a DDPM diffusion model, using the formalism detailed
in Appendix D. The neural network involved is a fully connected network with depth 3 and width
128, using a cosine time embedding. It is trained for 200 epochs. At sampling time, 1000 diffusion
steps are used.

Sampling The initial conditions are drawn at random following the same distribution of the training
data

Additional results Figure 6 shows the evolution of key metrics for a data assimilation trajectory,
for the various methods compared.
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Figure 6: Mass conservation, energy conservation and `2 error.
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E.2 Feasibility problem

Data The trajectories are discretized in time as (y1, . . . , yS , u1, . . . uS) ∈ R2S , with S = 200 and
a time interval ∆s = 0.01. The dynamics constraint

Cd := {x | y(0) = 0, ÿ(s) = ay(s) + bu(s), |u(s)| ≤ umax} (E.5)

is described by a linear equality constraint, discretized into a linear system, and an inequality constraint
on the control inputs. The projection on this convex constraint set is obtained by Dykstra’s double
projection algorithm [38], and is used within the ADMM solver. We take a = −10,b = 1, umax = 10.

Learning architecture We implemented a DDPM diffusion model, using the formalism detailed
in Appendix D. The neural network involved is a fully connected network with depth 3 and width
128, using a cosine time embedding. It is trained for 200 epochs. At sampling time, 1000 diffusion
steps are used.

Sampling The obstacle is a line, and projecting onto the feasible region is performed by taking the
corresponding state either directly above or directly underneath the obstacle.

25


	Introduction
	Problem formulation of constrained Langevin sampling
	Variational framework of sampling and duality
	Split augmented Langevin for strictly constrained sampling
	Variational formulation of constrained sampling
	Split Augmented Langevin
	Convergence analysis
	Practical implementation and deep generative models

	Application to physics-preserving generative modeling
	Bimodal field generation with prescribed energy
	Physically-constrained data assimilation
	Constrained trajectory priors for feasibility problems in optimal control

	Related work
	Conclusion
	Algorithms
	Detailed algorithms
	Projected Langevin
	Derivation of the Split-augmented sampling formulas
	Connection with Split-and-Augmented Gibbs samplers

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

	Variational framework for Langevin Monte Carlo
	Connection between Generative Models and Langevin Sampling
	Energy-Based Models (EBMs)
	Score-Based Generative Models
	Diffusion Models
	Score-based Diffusion Models

	Experimental details
	Data Assimilation
	Feasibility problem


