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Abstract
Data assimilation is a central problem in many
geophysical applications, such as weather fore-
casting. It aims to estimate the state of a poten-
tially large system, such as the atmosphere, from
sparse observations, supplemented by prior physi-
cal knowledge. The size of the systems involved
and the complexity of the underlying physical
equations make it a challenging task from a com-
putational point of view. Neural networks repre-
sent a promising method of emulating the physics
at low cost, and therefore have the potential to
considerably improve and accelerate data assimi-
lation. In this work, we introduce a deep learning
approach where the physical system is modeled
as a sequence of coarse-to-fine Gaussian prior
distributions parametrized by a neural network.
This allows us to define an assimilation operator,
which is trained in an end-to-end fashion to min-
imize the reconstruction error on a dataset with
different observation processes. We illustrate our
approach on chaotic dynamical physical systems
with sparse observations, and compare it to tradi-
tional variational data assimilation methods.

1. Introduction
Artificial intelligence is transforming many fields, and has
a growing number of applications in industry. In the sci-
ences, it has the potential to considerably accelerate the
scientific process. Geophysics and weather forecasting are
areas where deep learning is particularly active, with recent
months seeing an explosion in the number of large neural
models for the weather forecasting problem (Pathak et al.,
2022; Lam et al., 2022; Hoyer et al., 2023), building on re-
analysis datasets such as ERA5 (Muñoz-Sabater et al., 2021)
for training. In this work, we focus on the data assimilation
problem that underpins weather forecasting: tomorrow’s
weather forecast is based on today’s weather conditions,
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which are not directly measured, but are estimated from few
observations. Data assimilation is the inverse problem of
estimating the geophysical state of the globe on the basis
of these sparse observations and of prior knowledge of the
physics. The estimated state then serves as the starting point
for forecasting. While deep learning models are revolution-
izing the forecasting problem, they have yet to be applied
operationally to data assimilation.

The application of neural networks to inverse problems is an
active area of research. The general idea consists in training
a neural network to reconstruct a signal, using for training
examples a dataset of simulated physical states serving as
ground truth. For the data assimilation problem, several
approaches have been proposed to incorporate a deep learn-
ing in the loop. (Arcucci et al., 2021) propose a sequential
scheme where a neural network is trained at regular time
steps to combine data assimilation and the forecasting model.
Recently, the success of diffusion models for imaging (Ho
et al., 2020) has led to the development of so-called ”plug
and play” methods, where the neural network is trained to
learn a prior (Laumont et al., 2022). Once trained, the neural
prior can be used to solve a large number of inverse prob-
lems. In this line of work, (Rozet & Louppe, 2023) proposed
a data assimilation method based on a diffusion model. An-
other type of approaches called “end-to-end” aim at directly
training a neural network to minimize the reconstruction
error. They have the benefit of training the network directly
on the task of interest, but the versatility of the trained model
with respect to the different observational processes is chal-
lenging. An end-to-end neural reconstruction algorithm is
proposed in (Fablet et al., 2021), and aims at learning the
prior distribution of the signal by defining the reconstruc-
tion as a maximum a posterior estimate, leading to a bi-level
optimization problem. However, the complex prior induced
by the neural network may hamper the convergence of this
estimate, as it relies on non-convex optimization. Instead,
we explore a model where the prior has a sufficiently simple
structure to guarantee a convex posterior distribution.

Contributions In this work, we present a neural method
for data assimilation. We introduce a data assimilation
operator parametrized by a neural Gaussian prior, that is
designed to locally improve the likelihood of an estimate.
Our model is trained to minimize the reconstruction error in
an end-to-end fashion. We show how this operator may be
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iterated to reconstruct complex signals. The effectiveness of
our method is demonstrated on simulated nonlinear physical
systems. We also show how our method may be used to
enhance traditional data assimilation methods.

2. The data assimilation inverse problem
The aim of data assimilation is to reconstruct a state x ∈ Rd
from partial noisy measurements y ∈ Rm of that state (Bout-
tier & Courtier, 2002; Bocquet et al., 2014). For meteoro-
logical applications, for instance, the state x represents the
physical quantities on a grid representing the globe, and
the observations y are partial measurements, from differ-
ent sources: in situ measurements, weather balloons, satel-
lites, etc. These measurements may be very sparse, with an
observation rate m/d that may be of the order 1%, so we
cannot generally hope to recover the state as a function of
the observations alone. Indeed, for a given observation vec-
tor y, a large number of states are compatible, making data
assimilation an inverse problem. To reconstruct the state,
we need to supplement the partial observations with another
source of prior information on the state, which comes from
our physical or statistical knowledge of the problem.

The data assimilation problem is then as follows. Given
partial observations y and prior information on the state, the
aim is to estimate the most probable underlying state x. The
Bayesian probabilistic framework lends itself well to the
mathematical formalization of the problem : the theoretical
information about the state physics is captured by a prior
distribution x ∼ p(x), and the noisy, partial observations
of x can be modeled as y|x ∼ h(x) + ξ, with h the ob-
servation process, and an unbiased additive noise that is
typically assumed to be Gaussian ξ ∼ N (0, R) and inde-
pendent of x. Then, data assimilation can be seen as the
estimation of the state maximizing the state posterior distri-
bution p(x|y) = p(x)p(y|x)/p(y). Under the assumption
of Gaussian observational noise, this can be formulated as
the following minimization problem

minimize
x∈Rd

U(x) +
1

2
‖h(x)− y‖2R−1 , (2.1)

with U(x) = − log p(x), and where we have adopted the
notation ‖z‖C =

√
z>Cz for a positive definite matrix C.

We assume for simplicity that the observation function h is
known, although it may be only partially known in some
cases, such as remote sensing (Liang, 2005) or medical
imaging (Rangayyan & Krishnan, 2024).

Problem size For weather prediction, the state x rep-
resents the geophysical variables on a large spatial grid.
It is hence a signal of very high dimension with typi-
cally d ∼ 106 or even d ∼ 109. The size of the data
assimilation problem makes the computations and memory

costs very heavy, severely limiting the computational bud-
get of any numerical method. In the development of new
learning-based methods, it is essential to keep this computa-
tional constraint in mind if we hope to scale up to real-size
systems.

2.1. Least-squares Gaussian interpolation

The first approach considered for data assimilation is natu-
rally that of a linear-quadratic model. Assuming a Gaussian
a priori on the state x ∼ N (µ, P ) and a linear observation
function h(x) = Hx, with H ∈ Rm×d, the variational
Bayesian formulation for data assimilation (2.1) becomes a
quadratic least-squares problem:

minimize
x∈Rd

1

2
‖x− µ‖2P−1 +

1

2
‖Hx− y‖2R−1 (2.2)

whose maximum a posteriori solution takes the form

xMAP(y;µ, P ) := µ+K(y −Hµ), (2.3)

with the H-dependent Kalman gain

K = PH>(HPH> +R)−1 ∈ Rm×d. (2.4)

In the remainder of this work, the dependence with respect
to H is implicitly assumed in all quantities that depend on
the observation vector y.

For meteorological applications, the state x that is optimized
for is a snapshot of the set of geophysical variables at a
given time, when the observations have been collected. The
background term µ is the forecast of this state from the past
observations.

Computational cost For large-scale applications, solv-
ing (2.2) by computing the closed-form expression (2.3)
yields a O(m3 + dm) complexity in general, as it involves
solving a m × m linear system and computing a matrix-
vector products of size d×m. In operational geophysical
applications, this cost may be a bottleneck as d and m may
reach prohibitively large values. To avoid such costs, (2.2)
is solved by such as conjugate gradient (Fletcher & Reeves,
1964). In the data assimilation community, this variational
approach for the estimation of a large-scale geophysical
spatial state is called 3D-Var (Courtier et al., 1998).

2.2. Spatio-temporal data assimilation

So far, the prior knowledge of the state has taken the form
of a Gaussian distribution, which can capture the proximity
of the searched state to an estimate, and the correlations of
one state variable to another. Least squares interpolation
then searches for the state most faithful to the data, within
a fluctuation zone around the estimate. Although simple
and analytically solvable, this approach does not use signal
physics equations as prior information.

2



Neural Incremental Data Assimilation

In the 1990s, the quality of data assimilation analyses im-
proved significantly by incorporating a physical model to
the reconstruction prior, leading to the state-of-the-art vari-
ational assimilation algorithm 4D-Var (Le Dimet & Tala-
grand, 1986). This algorithm is a generalization of 3D-Var
to time-distributed observations, where the estimated sig-
nal x is a temporal sequence of the spatial geophysical state
on a time window, i.e. a trajectory, rather than one single
snapshot. The temporal dimension allows formulating the
system’s dynamical equations as a constraint for the sig-
nal. The reconstruction algorithm is applied sequentially on
a sliding time window, in combination with a forecasting
model, to produce regularly updated estimates of the mete-
orological variables. Alongside 4D-Var, other algorithms
exist for data assimilation of dynamical systems, including
sequential methods such as the celebrated Kalman filter, and
its extensions to nonlinear models (Jazwinski, 2007), and
to ensembling (Evensen, 2003). In this work, we focus on
the so-called weak-constraint 4D-Var algorithm (Trémolet,
2007; Fisher et al., 2012), which we briefly explain next.
Weak-constraint 4D-Var has the advantage being naturally
related to the Bayesian formulation (2.1), and is used in
operational systems.

For simplicity, we abstract from the time dimension in
our mathematical formalism, and still denote the spatio-
temporal signal as x ∈ Rd. The knowledge of a physical
dynamical model materializes as knowledge of a prior dis-
tribution U(x) in (2.1), which can be computed and dif-
ferentiated through with respect to x. In geophysics, this
model is typically a fluid dynamics simulator, and its gra-
dients are computed using the adjoint method (Talagrand
& Courtier, 1987). Hence, the resulting U(x) is more com-
plex and more informative than a Gaussian prior, but comes
with heavy computational costs. In the remained of this
work, we assume that the observational processes are lin-
ear: h(x) = Hx. In practice, h is nonlinear and is sequen-
tially approximated by its linear approximation. We argue
that linearizing the physical model is computationally far
more expensive than linearizing the observational process,
and hence that considering only linear observations does not
severely restrict the problem generality.

The weak-constraint 4D-Var algorithm aims at
minimizing (2.1) by a Gauss-Newton descent algo-
rithm (Gauss, 1877), with line-serach correction (Nocedal
& Wright, 1999). More precisely, a sequence of esti-
mates {zk, 1 ≤ k ≤ `} approximating the reconstruction
signal is iteratively computed. At each iteration k, the
objective function is approximated by its quadratic
expansion in the vicinity of zk ∈ Rd. Specifically, the prior
term is approximated as

U(x) ' U(z) +∇U(z)>(x− z)

+
1

2
(x− z)>∇2U(z)(x− z).

(2.5)

We may express expansion (2.5) as a Gaussian log-
likelihood:

U(x) ' 1

2
‖x− µ(z)‖2P (z)−1 , (2.6)

with
P (z) ' ∇2U(z)−1, (2.7a)

µ(z) = z − P (z)−1∇U(z), (2.7b)

the approximation above referring to the gradient-Hessian
approximation.

Weak-constraint 4D-Var is described in Algorithm 1. We
see that the sequence of estimates (zk) is iterated with a
recursion of the form

xk = A(zk, y)

zk+1 = zk + αk(xk − zk),
(2.8)

where assimilation operator A improves the current esti-
mate z using the observations and the local approximation
of the model, by performing a local optimal interpolation:

A(z, y) = xMAP(y;µ(z), P (z)). (2.9)

Limitations The 4D-Var algorithm represents the state of
the art for data assimilation in geophysics, and is deployed
in operational meteorological centers. Its main limitation is
the high computational cost of simulating and differentiating
through the physical model. In Algorithm 1, each compu-
tation of Pk and µk comes with a large cost in addition to
the cost of computing (2.9), hence limiting the method’s
accuracy. Note that this method may also be viewed as
an application of the iterative Kalman smoother (Bell &
Cathey, 1993; Ménard & Daley, 1996; Fisher et al., 2005;
Mandel et al., 2013). As is well known, an additional limita-
tion of this method is that the non-convexity of U may lead
to a complex minimization landscape, making the descent
algorithm likely to be stuck in local minima (Gratton et al.,
2007; Mandel et al., 2013). In the next section, we propose
to overcome these limitations by learning operator A from
data.

3. Neural data assimilation
Deep neural networks hold great promise for solving inverse
problems (Bai et al., 2020), as they can help recover the cor-
rupted signal by using the large amount statistical informa-
tion acquired on a training dataset. For the data assimilation
problem in meteorology or oceanography, the ground truth
signals x are not available as the geophysical systems are
not observed. However, a promising research direction con-
sists in training a deep neural network to learn a prior on
high-resolution simulations, or on the reanalysis datasets
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Algorithm 1 Incremental weak-constraint 4D-Var
input observation vector y ∈ Rm, observation ma-
trix H , iteration number `, initial estimate z0, tangent
linear physical model µ, P
output state estimation z`
initialize z0 := x0
for 0 ≤ k ≤ `− 1 do

compute Pk := P (zk), µk = µ(zk)
estimate xk = MAP(y;µk, Pk)
compute line search parameter αk
update zk+1 = zk + αk(xk − zk)

end for

such as ERA5, like neural weather models (Ben Bouallègue
et al., 2024).

Deep learning approaches to inverse problems may be sep-
arated in two categories (Mukherjee et al., 2021). A first
category of algorithms aims at learning a prior U(x) from
a training dataset, using a neural network, independently
of the inverse problem. Once trained, the learned prior can
be adapted to a reconstruction algorithm to reconstruct the
signal. These algorithms are often called “plug-and-play”,
as the trained neural prior can be used for any downstream
inverse problem. In a second category of algorithms, re-
ferred to as “end-to-end” learning algorithms, the neural
network is explicitly trained to solve the inverse problem.
In this case, the training consists of minimizing the neural
network’s reconstruction error, based on a dataset of state
and observations pairs (x(i), y(i)).

One challenge in training end-to-end algorithms is the multi-
plicity of possible observation processes: the trained neural
network must be compatible with all possible (x, y), and
hence with varying observation processes H , with differ-
ent dimensions m for the observations. It should therefore
model only the prior distribution U(x), and not depend
directly on the observation process H .

3.1. Neural assimilation operator

We adopt an end-to-end learning approach, and we aim at
learning a neural assimilation algorithm by minimizing a
reconstruction error. We observe that, unlike other inverse
problems such as image inpainting, data assimilation often
starts with a first physically plausible estimate z of the un-
known state. Therefore, rather than learning to interpolate
the observations from scratch, we train a neural network
to improve the state estimate given z. Drawing inspiration
from the 4D-Var algorithm, we learn an assimilation op-
erator A(z, y; θ), where θ denotes the parameter vector of
a neural network. As in (2.6), we model the local prior
distribution conditioned on z as a Gaussian prior

x|z ∼ N (µ(z; θ), P (z; θ)), (3.1)

Algorithm 2 Incremental neural data assimilation
input observation vector y ∈ Rm, observation ma-
trix H , iteration number `, initial estimate z0, neural
models µ, P , trained parameter θ
output state estimation z`
initialize z0 := x0
for 0 ≤ k ≤ `− 1 do

compute Pk := P (zk; θ, sk), µk = µ(zk; θ, sk)
estimate xk = MAP(y;µk, Pk)
compute temperature parameter sk
update zk+1 = zk + sk(xk − z0)

end for

where µ(z; θ) and P (z; θ) are trainable neural networks.
Given this Gaussian prior, the observations are incorporated
by solving the least-squares interpolation (2.2):

A(z, y; θ) = xMAP(y;µ(z; θ), P (z; θ)). (3.2)

Versatility As we pointed out, the trained neural network
should be compatible with arbitrary observation processes.
By formulating it as the solution of a y-dependent interpo-
lation problem, our assimilation operator (3.2) is defined
for any observation process (H, y), although the under-
lying neural networks models only the prior distribution.
In particular, the neural networks involved depend neither
on y, nor on H: the neural assimilation operator (3.2) com-
bines the observations with a neural prior (3.1) of the state
through the computation of a maximum likelihood estima-
tor, and this computation is valid for any (H, y) pair for
the same neural network. At prediction time, the trained
neural networks µ(z; θ), P (z; θ) may be used to assimilate
a new observation y obtained from an arbitrary observation
process H by solving (3.2).

Training Given a dataset (x(i), y(i), z(i)0 ) consisting of
signals x(i) and partial observations y(i) obtained from
different observation processes H(i), supplemented with
coarse estimates z(i) of the signal, the neural prior (3.1) is
trained to minimize the reconstruction error with the follow-
ing objective:

minimize
θ∈Rn

N∑
i=1

‖A(z(i), y(i); θ)− x(i)‖2

with A(z, y; θ) = xMAP(y;µ(z; θ), P (z; θ)).
(3.3)

We train our model by minimizing (3.3) using stochastic
gradient descent, with the ADAM optimizer (Kingma &
Ba, 2015). This training objective takes the form of a bi-
level optimization problem. Solving the inner optimization
problem involves computing the optimal interpolation (2.3),
which is computed solving a linear system of size m. We
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need to propagate the gradients with respect to θ through this
no-trivial operation during training. This may be handled by
implicit differentiation, allowing to compute the gradients
of the solution with respect to θ, without explicitly inverting
the system’s matrices (Johnson, 2012).

This training objective is similar to that of (Fablet et al.,
2021), where a neural interpolator called 4DVarNet is used
to learn both the global prior U(x) and the minimization
algorithm of (2.1), rather than a local operator A(z, y) 7→ x.
In our case, however, the inner optimization problem (2.1)
can be solved explicitly because the cost is quadratic. In con-
trast, it is only approximately solved in the case of 4DVar-
Net, due to the non-convexity of the inner cost.

Computational cost As we mentioned, the large size of
the targeted physical systems requires carefully considering
the computational cost of the data assimilation methods. We
model P as a band matrix, hence limiting both the memory
storage to a O(d) cost and the computational complexity of
solving the linear system in (2.3) using the Thomas algo-
rithm (Datta, 2010). This structure also imposes a temporal
structure in the signal.

3.2. Incremental neural data assimilation

Since our assimilation operator is trained to reconstruct
the signal from a coarse approximation, a one-shot recon-
struction is likely to yield blurry results. To improve re-
construction, we may iterate this operator, with the aim of
progressively improving the reconstruction signal. Building
on the recent advances of cold diffusion (Bansal et al., 2024),
we propose an iterative strategy aiming at reconstructing the
signal in a coarse-to-fine fashion. We introduce a scalar tem-
perature parameter 0 ≤ s ≤ 1 modeling the coarseness of
the reconstruction, and we allow our neural prior to depend
on s as µ(z; θ, s), P (z; θ, s). Intuitively, the prior should
be coarser for larger values of s, and become sharper and
more local as s→ 0. We provide estimates zk at different
temperature levels {s1 ≥ · · · ≥ s`} as linear interpolations
between z0 and z` := x:

z
(i)
k = skz

(i)
0 + (1− sk)z(i)` . (3.4)

Our training objective is adapted as

minimize
θ∈Rn

∑̀
k=1

N∑
i=1

‖A(z(i)k , y(i); θ, sk)− x(i)‖2. (3.5)

At prediction time, the signal is reconstructed by iteratively
applying A(z, y; θ, s) following the sampling algorithm in-
troduced in (Bansal et al., 2024). We provide a detailed
description of our iterative reconstruction method in Algo-
rithm 2.

4. Experiments on physical systems
In order to evaluate the performances of our data assimila-
tion algorithm, we experiment on two simulated dynam-
ical systems: the pendulum and the Lorenz 63 dynam-
ical systems. We train our neural model on a dataset
generated from the dynamical system with different tra-
jectories x sampled from random initial conditions, and
different observation processes, leading to various (x, y)
pairs for the same x. Our JAX implementation of our
neural assimilation algorithm is available online at https:
//github.com/MB-29/assimilation.

Architecture We take for µ(z; θ, s) and P (z; θ, s) two
fully-connected neural networks of depth 4 and width 32.
The dependence with respect to s is implemented as a po-
sitional embedding. The d × d matrix P is modeled as a
band matrix with bandwidth b = 2ϕ, with ϕ the phase space
dimension.

Baselines We compare our neural assimilation algorithm
with various baseline. Each method starts from a first
guess estimate z0 of the signal, computed by performing
a Gaussian interpolation from the observations (see be-
low). We implement the weak-constraint 4D-Var algorithm
as a Levenberg-Marquardt Gauss-Newton Algorithm us-
ing the JAXopt implementation (Blondel et al., 2021), and
the Diffrax library for differentiating through differential
equation solvers (Kidger, 2021). As an ablation, an “un-
conditional” cold diffusion model is trained to restore the
signal by minimizing objective (3.5) without the informa-
tion provided by the observations. It is then applied follow-
ing Algorithm 2 just as our neural assimilation algorithm,
without using y. The resulting reconstructed signal depends
on the observations only through the first estimate z0, which
is computed to match y, but the neural network is trained
to compute the next iterates by increasing only the prior
term U(x) in (2.1), not the observation likelihood.

4.1. Pendulum

We start with the pendulum, which is arguably one of the
simplest nonlinear physical systems. Importantly, the pendu-
lum is simple enough to be decently approximated by linear
dynamics. It can be shown that a linear dynamical model
with Gaussian model noise yields a Gaussian prior distri-
bution for the trajectory x. Therefore, a natural first guess
for the pendulum consists in the quadratic least-squares es-
timator z0 := xMAP(y;µ0, P0), where µ0 and P0 can be
computed analytically as a function of the initial condition
distribution and the pendulum’s linear model. Starting from
this estimate, we run the baselines and our neural assimila-
tion algorithm.
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Data We generate discrete trajectories x(i) of T = 100
time steps from the nonlinear pendulum dynamics with
random initial conditions sampled in phase space, which
is of dimension 2, hence d = 2 × 100 = 200. The
observations are generated by observing the pendulum’s
position at sparse time steps, with Gaussian observation
noise ξ ∼ N (0, ρ2Im), with ρ = 0.01.

Experimental setup We train an adaptation operator to
reconstruct the signal in one shot from z0, following (3.3).
At prediction time, we apply the trained neural assimilation
map A(z; y; θ) to z0 on a separate independent dataset.

Results Reconstruction samples are presented in Figure 1.
While the linear model fails at reconstructing the trajectories
outside the linearization zone (angle and momentum close
to 0), one application of our neural assimilation operator
accurately reconstructs the signal. The performances of the
various methods are shown in Table 1. Although the pen-
dulum is simple enough for all the methods to accurately
reconstruct the signal, we see that the computational gain of-
fered by a train neural network is considerable with respect
to computing the physical model.
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assimilationinterpolation

Gaussian

Figure 1. Reconstructed trajectories for the pendulum.

4.2. Lorenz 63

We now turn to a more complex system. The Lorenz sys-
tem is a simplified physical model for for atmospheric con-
vection (Lorenz, 1963). Three variables are governed by
the following set of coupled nonlinear ordinary differential
equations:

du1
dt

= σ(u2 − u1)

du2
dt

= ρu1 − u2 − u1u3
du3
dt

= u1u2 − βu3.

(4.1)

We set σ = 10, ρ = 28 and β = 8/3, values for which the
system is known to exhibit chaotic solutions. We sample the
initial conditions in the system’s stationary distribution, fol-
lowing the experimental setup of (Rozet & Louppe, 2023).
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Figure 2. Reconstructed trajectories for the Lorenz 63 system.
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Figure 3. Output of 4D-Var from various initializations.

Data We generate datasets of trajectories by integrat-
ing (4.1) between time steps of length dt = 0.025, and
adding a small amount of Gaussian noise η ∼ N (0,dtI3)
at each time step. The number of time steps is T = 32,
hence d = 96. We normalize each component of the tra-
jectory to have zero mean and unit variance. The obser-
vations are sparse samples from the first component u1
only, with observation noise of size 0.05. We take for
the initial state estimate z(i) the maximum likelihood in-
terpolation of y(i) under the moment-matching Gaussian
distribution of x(i), which is the coarse Gaussian approx-
imate of p(x). More precisely, z(i)0 = xMAP(y

(i); µ̂, P̂ ),
with µ̂ and P̂ the empirical mean and the empirical covari-
ance of {x(i)}. We define {z(i)k } as in (3.4) with regular
spacing sk = 1− k/(`+ 1). We take ` = 5.

Experimental setup We train our neural assimilation op-
erator to reconstruct the signal at different temperatures
following (3.5). At prediction time, we apply Algorithm 2
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Table 1. Performances of the various approaches. The computa-
tional time unit is the run-time of the fastest of the algorithms at
prediction time.

Method 4D-Var Cold diffusion Neural assimilation
Pendulum error 0.1 0.15 0.12
Lorenz 63 error 0.9 1.1 0.5
Computational time 10 1 2

for the neural methods, along with the 4D-Var algorithm (Al-
gorithm 1). Furthermore, in order to establish a link between
our new neural method and traditional assimilation methods,
we investigate how the output of the neural method, which
is a priori not interpretable, may be transformed into a plau-
sible physical signal. To do this, we correct these estimates
with several iterations of 4D-Var on top of the neural esti-
mate of the signal, until the objective function (2.1) becomes
lower than 0.05. As a result, the new output is constrained
to satisfy the physical model, but potentially at a lower cost
than if we had started from scratch because the initialization
that we provided is already close to the true signal.

Results Figure 2 shows reconstruction samples from the
baselines and from our method, and Table 1 shows the aver-
age reconstruction error for the various methods. We can see
that our neural data assimilation algorithm can reconstruct
the signal while staying close to the observations. In con-
trast, the unconditional baseline cannot efficiently improve
both the signal likelihood and the data fidelity. Compared
to 4D-Var, our neural approach offers considerable com-
putational gains, and good accuracy in these experiments.
Further, we compare the reconstructed signals corrected by
4D-Var for an observation sample in Figure 3, where fixed
number of 4D-Var iterations are applied to two different
initializations: the Gaussian first-guess and the neural re-
construction of our algorithm. The initialization provided
by our method allows to recover the original signal with
very high accuracy by running few steps of 4D-Var on top
of the neural estimate, while the 4D-Var algorithm with
Gaussian initialization (“vanilla”) leads to an inaccurate lo-
cal minimum. Importantly, the improvement with respect
to a Gaussian initialization is significant, both in terms of
reconstruction error and in terms of number of iterations, as
the 4D-var algorithm converged after 4 iterations from the
neural initialization and 23 iterations from the Gaussian ini-
tialization. We further discuss the comparison between deep
learning data assimilation approaches and 4D-Var in Sec-
tion 6.

5. Related work
The state of the art methods for data assimilation are the
4D-Var algorithm (Le Dimet & Talagrand, 1986; Trémolet,

2007) and the ensemble Kalman filter (Evensen, 2003; Boc-
quet et al., 2014). The statistical component in these ap-
proaches lies in the definition of covariance matrices for
the background state estimates, for the model and for the
observations. The numerical cost of computing the physical
model and its linear tangent local approximation may be
considerable for large systems.

In recent years, several deep learning algorithms have been
proposed for the data assimilation problem. Building on
diffusion models (Ho et al., 2020), (Rozet & Louppe, 2023)
propose a data assimilation method based on score-based
diffusion. This approach proceeds in a plug-and-play fash-
ion, and sampling from the posterior distribution relies on
an approximation that is computed on the trained model.
Among “end-to-end” deep learning approaches for data
assimilation, the one that is closest related to ours is the
4DVarNet algorithm of (Fablet et al., 2021), which aims
to directly train a neural network to minimize the recon-
struction error. The complex prior modeled by the neural
network is non-Gaussian, and estimating the maximum a
posteriori reconstruction in this framework relies on non-
convex optimization.

6. Conclusion
In this work, we have shown how deep learning methods
may be applied to the data assimilation problem. Our neural
method models in a coarse-to-fine fashion and is trained
to minimize the reconstruction error. Importantly, we have
shown how such a deep learning method may be used in
combination with a traditional data assimilation method to
enhance the reconstruction accuracy and reduce the compu-
tational time.

We believe that deep learning methods alone might not
be accurate enough to completely outperform traditional
physics-based approaches such as 4D-Var. While our neural
approach had good reconstruction results on the presented
simulated physical systems, it should be noted that the small
size of these systems allows for the neural network to learn
the stationary distribution from a reasonably small dataset.
For real-life systems, it is unlikely that a neural network
can accurately generalize the learned signal outside a train-
ing dataset, where the physics may be complex and fairly
different from what the model has seen. In contrast, physics-
based approaches are far more general, as the simulated
physical laws are accurate everywhere in the state space.
Therefore, using a deep learning algorithm to provide an
approximate solution, and using it as an input to 4D-Var to
reduce the number of iterations seems like a good trade-off
benefitting the best of both words.

In future work, it would be interesting to apply our method
to physical systems of larger scale, and to explore how the

7
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computational burden of data assimilation may be further
reduced on such high-dimensional systems. Another impor-
tant aspect that is crucial for data assimilation is uncertainty
quantification, for which there has been recent progress in
the deep learning community (Arcucci et al., 2021; Corso
et al., 2022).
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Ben Bouallègue, Z., Clare, M. C., Magnusson, L., Gas-
con, E., Maier-Gerber, M., Janoušek, M., Rodwell, M.,
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