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Abstract

Implicit differentiation allows one to compute gradients in a challenging setting where the
output may not be explicitly defined in terms of the input. Recent work led to the definition
of deep implicit layers [1] which allow to integrate implicit operations into an automatic
differentiation framework, paving the way for new gradient-based optimization approaches.
We propose applications of implicit layers to a variety of new problems including neural
differential equations, neural optimal control, system identification and experimental de-
sign. We test these methods with experiments and we compare our results with analytical
solutions and already-existing methods.
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1 Introduction

Deep learning is at the core of artificial intelligence and gave rise to extremely powerful technologies
in a large number of fields such as self-driving cars [2], natural language processing [3] or board
game programming [4]. The adjective "deep" refers to the structure of the underlying mathematical
entity : deep learning is based on artificial neural networks, which are optimizable functions made of
a stack of elementary blocks called layers. The ability to differentiate through a chain of layers with
the well-known backpropagation algorithm [5] is the crucial motivation for these architectures, as it
allows neural nets to be used in a gradient-based optimization framework. The great expressiveness
of neural nets [6] combined with powerful gradient descent algorithms [7] make deep learning a very
effective tool for a large number of tasks.

One of the central notions of modern deep learning is hence that of layers. Neural networks are
built by stacking a chain of layers together, allowing for complex architectures and expressive models.
These layers include fully connected layers, convolutional layers, transformers, etc [8][9]. Traditionally,
the layers are made of well known functions such as linear maps, followed by nonlinear maps such as
tanh, the sigmoid, or ReLU activation [10]. Since the corresponding derivatives are also well known,
the neural nets can be differentiated through by gradient backpropagation.

In classical layers, the output is obtained by directly applying a usual function to an input. Implicit
layers differ from this since they are not defined in terms of simple functions of the input but rather in
terms of implicit, possibly complex conditions that the input and the output must satisfy. For example,
the output can be defined as the value of some fixed point equation, or as the solution of an ordinary
differential equation.

Still, implicit layers are designed to fit into an automatic differentiation function and hence satisfy
differentiation properties. The central point of implicit layers is to establish differentiation formulae,
so that the layer can be integrated in a gradient propagation framework just like "explicit" layers [1].
Deep implicit layers hence fit into the more general paradigm of differentiable programming which
is the combination of differentiable algorithmic modules, ensuring an end-to-end differentiable model
suitable for gradient-based optimization [11].

In this work, we apply deep implicit layers of different types to a variety of tasks. We will first focus
on neural differential equations introduced by Chen et al. [12], which define an implicit neural layer.
Since most physical systems can be described by differential equations, the ability to model them with
a neural network allows us to cast differential systems into optimization programs. Then, we focus
on system identification and experimental design, where we are able to use automatic differentiation
through a model to find the optimal inputs. Our contributions are summarized as follows.

Implicit layers and automatic differentiation In section 2 we first define implicit layers and set the
theoretical framework for automatic differentiation, and then introduce the main implicit layers used
in the following sections together with the corresponding backward gradient formulae.

Learning dynamics from physical principles In section 3 we apply neural differential equations to
an elementary physics problem and recover a theoretical uniqueness result by numerical optimization.

Neural optimal control In section 4 we demonstrate a connection between neural differential equa-
tions and optimal control, and use it to numerically solve two classical optimal control problems.

System identification In section 5 we leverage automatic differentiation of singular value decompo-
sition to provide a numerical solver for an optimal control problem used in system identification.

Experimental design In section 6 we introduce a novel approach to the Bayesian experimental design
problem based on automatic differentiation and illustrate it on a toy model.
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2 Implicit layers and automatic differentiation

Automatic differentiation (AD) refers to a set of techniques allowing to evaluate the derivative of an
operation, a function or a computer program automatically. The derivatives of elementary operations
such as the sum, the product, trigonometric functions and other usual functions are well-known and
implemented. As we will see, a program made of a sequence of such operations may be differentiated
through by making use of the chain rule of differentiation and by computing the derivatives of these
functions recursively.

One of the main motivations of AD is gradient-based optimization. Assume we want to minimize a
scalar, differentiable function L of some input x ∈ Rd :

min
x∈Rd

L(x). (2.1)

Then, gradient-based algorithms proceed essentially by iterations of the form

xt+1 = xt − η∇L(x), η > 0. (2.2)

Functions endowed with AD can hence have their gradient computed automatically, making gradient
descent very efficient for the minimization program (2.1).

Contribution In this section we give a theoretical framework for implicit layers inspired from [1]. We
recall the definition of some implicit layers that we will use in the following sections together with their
adjoint formulae.

2.1 The chain rule

Differentiable programming consists in stacking up automatically differentiable functions and in
propagating the derivatives along this chain of operations. The chain rule expresses the derivative of
one of the functions in terms of the derivatives of the next one.

Assume we want to compte the gradient of some scalar quantity L ∈ R with respect to x ∈ Rm, and
that L is a function of some intermediate differentiable quantity y(x) ∈ Rn :

L(x) = L
(
y(x)

)
. (2.3)

Formally, using the two notations L(x) and L(y) simultaneously is incorrect as they refer to two different
mathematical functions. However, we will use this notation shorthand for the sake of simplicity.

The chain rule of differentiation expresses the derivatives of L with respect to x in terms of the
derivatives with respect to y as follows :

∂L

∂xj
=

n∑
i=1

∂L

∂yi

∂yi
∂xj

. (2.4)

Defining the Jacobians ∂L/∂x, ∂L/∂y of L(x) and L(y) and the Jacobian ∂y/∂x of y(x), equation
(2.4) admits the following matrix notation

∂L

∂x
=
∂L

∂y

∂y

∂x
. (2.5)

Transposing (2.5) we obtain the gradient chain rule :

∇xL =
∂y

∂x

>
∇yL, (2.6)

The previous equations connect the gradients of L with respect to both the input and the output of
the function y(x). This means that if one is able to compute the Jacobian of y at x, and the gradient
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Figure 1: Reverse mode accumulation for AD. Once the forward pass is peformed, the backward pass
can use some of the computed variables to backpropagate the adjoint.

of L with respect to one of the quantities x or y then one can compute the other gradient by a simple
operation. In particular, there are two ways to read equation (2.5). First, one can fix a scalar input xi
and run the computation forward, then repeat for each input. This is known as forward-mode
accumulation. Alternatively, reverse-mode accumulation fixes one scalar output and runs the
computational graph backwards. The latter technique is more advantageous when the dimension of
the output is smaller than that of the input, which is clearly the case in deep learning where the loss
function is scalar and the number of parameters is large. We will therefore focus on reverse-mode
accumulation in the following.

Reverse-mode accumulation works as follows [13]. In a feedforward computational graph, the for-
ward pass consists in computing and storing the outputs x, y(x), . . . , L recursively. After that, the
backward pass, often refered to as backpropagation, computes the gradients ∇LL = 1, . . . ,∇yL,∇xL
backwards, using ∇yL to compute ∇xL. These two steps result in the the computation of the value
of the function L and that of its gradient with respect to the inputs respectively. Reverse-mode
accumulation is illustrated in figure 1.

2.2 The notion of layer

We call a layer a map y(x) for which one can implement a forward pass computing y(x) as a function
of x and a backward pass computing ∇xL as a function of ∇yL, of y(x) and possibily of additional
variables stored during the forward pass. Hence, a layer is defined as a function that is compatible
with reverse-mode accumulation and that can be integrated in an AD framework.

This definition extends that of artificial neural net layers. In the latter case, x 7→ y(x) is often
made of a linear map and an activation function, for which the derivatives are well known. If y(x) is
a more complex function however, it may be challenging to directly compute the derivative of y with
respect to x. Yet, interestingly, one can often still derive the Jacobian or at least a relation between
the gradients ∇xL and ∇yL, and hence perform backpropagation.

Throughout this work, we will adopt the following standard notation

x̄ :=
∂L

∂x
= ∇xL> (2.7)

for the adjoint of x in the computation of L. This notation stresses the fact that the fixed scalar
output L does not matter in the definition of the layer since the rules of forward and backward
propagation work independently of the final output. The chain rule may be expressed in terms of
adjoints in the following way

x̄ = ȳ
∂y

∂x
. (2.8)

Another important point in the definition of layer is the fact that the forward and backward compu-
tations are separated, the only condition being that the value of the output y(x) may be required for
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the backward pass. This has the fundamental consequence that the computational burden of calculat-
ing y(x) does not intervene in the backward computation. Typically, y(x) might be hard to compute
and involve an iterative algorithm, but computing x̄ might be a expressed as a simple function of ȳ in
an adjoint equation. In this case, deriving an adjoint equation keeps one from storing varibales and
backpropagating through numerous and possibly non-differentiable steps as one would do naively.

2.3 A one-dimensional example

A common layer in neural networks is the fullly connected layer, i.e. a linear map with an additive
bias, which is often combined with a nonlinear function like tanh. For the sake of simplicity, we restrict
ourselves to one-dimensional variables. Assume the following relation in R :

y = tanh(wx+ b), (2.9)

where the weight w and the bias b are fixed. Then the forward pass is simply achieved by multiplying
by w, adding b and applying the function tanh. The backward pass multiplies the adjoint of y by the
Jacobian of y(x), which is straightforward to compute

y′(x) = w sech2(wx+ b). (2.10)

Since hyperbolic functions are already implemented or easy to implement in most scientific program-
ming languages, both of these passes are straightforward.

Let us now consider an implicit variation of this layer. Following [1], we take for example a fixed
point layer which underlies so-called deep equilibrium models [14]. Assume y is obtained from x by
solving the following fixed point equation

tanh(wy + x) = y. (2.11)

Unlike equation (2.9), (2.11) is implicit in y in the sense that it does not express y as a usual function
of x. Performing the forward pass is hence a mathematical problem per se and may involve complicated
numerical methods. Regardless, one can still differentiate through relation (2.11) with respect to x,
and obtain

y′(x) = w sech2(wy + x)y′(x) + sech2(wy + x), (2.12)

yielding

y′(x) =
sech2(wy + x)

1− w sech2(wy + x)
. (2.13)

Although the relation defining y is implicit, we can still recover an explicit formula for the Jacobian
(2.13) by differentiation. Then, the adjoint of x with respect to some scalar function L can be obtained
by the chain rule

x̄ = ȳy′(x). (2.14)

This example highlights the fact that although the output of the layer is defined implicitly, we can
still differentiate this implicit equation and recover the Jacobian of the function y(x). We will see in
next section a more general result regarding implicit equations layers.

The fixed point layer also illustrates the possibility of separating the forward pass and the backward
pass. Indeed, solving the fixed point equation often involves an iterative algorithm such as Newton
method [1]. However, we can here readily compute the backward pass by simple algebraic operations,
regardless of the forward pass computation. In particular, we are free from backpropagating through
all the steps of the Newton solver, which would be costly in terms of memory.

6



2.4 Implicit equation layers

The previous result may be generalized to any implicit relation satistfying the implicit function
theorem (see [15] for example). Assume that the function x ∈ Rn 7→ y(x) ∈ Rn we want to differentiate
through is defined by some equation in Rn :

φ
(
x, y(x)

)
= 0. (2.15)

In order to backpropagate the gradient from y to x, we want to compute the Jacobian ∂y/∂x. If the
assumptions of the theorem are satisfied, we can differente (2.15) with respect to x :

∂φ

∂x
+
∂φ

∂y

∂y

∂x
= 0, (2.16)

meaning that
∂y

∂x
= −

(
∂φ

∂y

)−1 ∂φ
∂x
. (2.17)

Note that this corresponds to equation (2.13) in the previous example. Then, by the backpropagation
equation (2.8)

x̄ = −ȳ
(
∂φ

∂y

)−1 ∂φ
∂x
. (2.18)

It is important to note that the computation of the right-hand side of this equation does not require
to compute and store the Jacobian ∂φ/∂y and its inverse, it only requires solving a linear system and
then performing a matrix multiplication. There are however two choices for this matter : (a) solving n
linear systems of size n× n

∂φ

∂y
λ =

∂φ

∂x
(2.19)

then multiplying by the vector ȳ of size n or (b) solving one linear system of size n× n

∂φ

∂y

>
λ = ȳ> (2.20)

and multiplying by the n × n matrix ∂φ/∂x. Since L is scalar and x and y are possibly high-
dimensional n� 1, option (b) is much more efficient.

Equation (2.20) is refered to as the adjoint equation for equation (2.15). It is a general statement
that solving the adjoint problem is of similar complexity as that of solving the forward equation [16],
as we will see in the next two sections.

2.5 Adjoint of singular value decomposition

Let us now tackle a concrete example of implicit function : singular value decomposition. The
singular value decomposition (SVD) of a matrix A ∈ Rn×d is defined as

A = USV > (2.21)

with
U ∈ Rn×n, S ∈ Rn×d diagonal, V ∈ Rd×d (2.22)

and
U>U = In, V >V = Id. (2.23)

The matrix A is decomposed as the product of two unitary matrices with a diagonal matrix whose
diagonal entries are called singular values of A and are related to the principal components of its
columns. This decomposition is extremely common in signal processing and machine learning and we
will see an application example in section 5. Therefore, being able to differentiate through it is a very
useful property.
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In computer programs, the SVD of a matrix is usually computed by the Householder method which
consists in bidiagonalizing the matrix through a series of multiplications [17]. Applying AD to these
operations is conceivable, but very inconvenient. Instead, it is possible to derive a closed-form adjoint
formula for SVD [18][19].

Let us differentiate (2.21)
dA = dUSV > + UdSV > + USdV >, (2.24)

and the orthogonality equations (2.23):

dU>U + U>dU = 0, dV >V + V >dV = 0. (2.25)

The latter equations impliy that matrices dU>U and dV >V are both anti-symmetric , and in particular
have zero diagonals. Now pre-multiplying (2.24) by U> and post-multiplying by V gives

U>dAV = U>dUS + dS + SdV >V. (2.26)

Taking the major diagonal yields
dS = In,d ◦ (U>dAV ), (2.27)

where ◦ denotes the Hadamard product. Equation (2.27) means that the differential of S in A is the
linear map ` : M 7→ In,d ◦ (U>MV ). Let Ā and S̄ denote the adjoints of A and S respectively. From
(2.5), `∗ the transpose of ` satisfies

Ā = `∗(S̄). (2.28)

By definition, for any matrix M ,

tr
(
`∗(S̄)M>

)
= tr

(
S̄>`(M)

)
. (2.29)

From (2.27),

tr
(
S̄>`(M>)

)
= tr

(
S̄>(In,d ◦ (U>MV ))

)
(2.30)

= tr
(
S̄>U>MV

)
because the trace operates on diagonal entries (2.31)

= tr
(
US̄V >M>

)
. (2.32)

It follows that `∗(S̄) = V S̄U> and hence

Ā = V S̄U>. (2.33)

This formula is already implemented in several AD frameworks such as Torch [20].

Singular value decomposition is an example of implicit layers. Indeed, equations (2.21) and (2.23)
connect the input A and the output S implicitly, without specifying an explicit way of computing S
as a function of A since the orthogonal matrices U and V are not explicitly defined. Starting from
these implicit conditions, we differentiated the equations and managed to derive a formula for the
differential dS, and hence for the adjoint Ā. This result does not depend on the way of computing
the actual SVD, which is a great advantage. In particular, it is crucially memory-saving as it keeps us
from applying AD through all the steps of the forward computation of SVD. Note also that the adjoint
equation we obtained is of the same type as the forward equation (2.21), and therefore does not bring
additional computational complexity.

2.6 Differential equations

Let us see how differential equations can define an implicit layer and how they can be differentiated
through. An ordinary differential equation (ODE) is an equation of the form

dx

dt
= f

(
x(t), t, θ

)
, t ∈ [0, T ] (2.34)
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where T > 0 is a time horizon, d/dt denotes the time derivative, x : R → Rd is the trajectory, and
the flow of the ODE f is a Rd-valued function of the current state x(t), of the time t and of some
parameter vector θ ∈ Rp.

In the following, we will restrict ourselves to functions f that do not depend on t explicitly, in the
sense that the differential equation takes the following simpler form

dx

dt
= f(x, θ). (2.35)

This type of ODE is called an autonomous system as the evolution of the trajectory depends only on
the current state x(t). We will assume that the ODEs satisfy the assumption of the Cauchy-Lipschitz
theorem [21] so that their solutions are always unique.

2.6.1 ODEs as implicit layers

Let a ∈ Rd be an input value and xθ be the solution of the following Cauchy problem

dx

dt
= f(x, θ)

x(0) = a.
(2.36)

We define an ODE layer y(a, θ) of two inputs a and θ as a function of the form

y(a, θ) = xθ(T ). (2.37)

As we defined it, an ODE layer evaluated at (a, θ) is obtained by integrating a differential system
starting at a and whose flow fθ is parametrized by θ. Note that this definition is implicit as the output
depends on the output through the resolution of an ODE. Integrating a Cauchy-Lipschitz problem is a
task of a certain complexity itself, and the ODE layer (2.37) is defined irrespective of this integration
step. As we will see, we can derive an adjoint equation for this layer with respect to both of its inputs,
making ODE layers fully implementable in an AD pipeline. This section is based on the paper of Chen
et al. that introduced neural ODEs [12].

2.6.2 The adjoint ODE

As before, assume some scalar quantity L depends on the output y of the layer. We first want to
determine how to backpropagate the gradient from the output to the input. The trajectory

(
x(t)

)
of the ODE can be seen as a continuum of feedforward infinitesimal layers, where the states x(s) at
time s > t are deterministic functions of x(t). Specifically, between depths t and t + h, the dynamics
transforms x(t) into

x(t+ h) = x(t) + hf
(
x(t), θ). (2.38)

Figure 2 gives a representation of this discretization viewpoint where the trajectory is an infinite
sequence of inputs transformations with infinitely small layers of size dt = h.

Applying the chain rule (2.5) between the input and the output of one infinitesimal layer, we obtain

x̄(t) = x̄(t+ h)
∂x(t+ h)

∂x(t)

= x̄(t+ h)

(
I + h

∂f

∂x

(
x(t), θ

))
.

(2.39)

Letting h→ 0, the adjoint state x̄ satisfies the following differential equation

dx̄

dt
= −x̄ ∂f

∂x

(
x(t), θ

)
. (2.40)
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θ

. . .

θ θ

θ

a = xθ(0) fθ − I fθ − I fθ − I

dt

a ODE layer

xθ(T ) = y(a, θ)

y(a, θ)

Figure 2: An ODE layer seen as the continuous limit of a series of residual cells.

The adjoint differential equation (2.40) is the continuous limit of the chain rule and the gradient
backpropagation for a infinite series of infinitesimal weight-sharing layers.

This ODE allows one to compute the adjoint of the initial state once the forward pass is performed,
i.e. once x(t) is integrated. Indeed, integrating the adjoint ODE gives ȳ as a function of z̄ :

ȳ − ā = solve
(
(2.40)

)
, (2.41)

hence propagating the gradient through the ODE with the boundary condition being the adjoint of
the output ȳ. Solving this ODE backwards is the continuous analog of performing backpropagation.

2.6.3 Adjoint of the parameter

The structure of ODE layers allowed us to compute the adjoint of the input as a function of the
adjoint of the output. As we will see, we can also leverage the mathematics of differential equations
to derive the gradient with respect to the parameter θ.

The scalar function L we are computing the gradient of depends on θ through y(a, θ) = xθ(T ), and
can more generally been seen as a function of any of the points xθ(t), t ∈ [0, T ] of the trajectory since
the adjoint of the different x(t) are connected by the adjoint ODE (2.40). Therefore, we are interested
in the dependence of xθ(t) with respect to θ, which is encoded in the sensitivity ∂xθ(t)/∂θ.

The evolution of the state x during an infinitesimal time h is given by (2.38). Let us differentiate
with respect to θ :

∂x

∂θ
(t+ h) =

∂x

∂θ
(t) + h

∂f

∂x

(
x(t), θ

)∂x
∂θ

(t) + h
∂f

∂θ

(
x(t), θ

)
. (2.42)

In the limit h→ 0, we obtain the following ODE

d

dt

∂x

∂θ
=
∂f

∂x

(
x(t), θ

)∂x
∂θ

(t) +
∂f

∂θ

(
x(t), θ

)
. (2.43)

Now, the derivative of L with respect to θ is 1

θ̄ :=
∂L

∂θ
= x̄(T )

∂x(T )

∂θ
(2.44)

Since the sensitivity at t = 0 is zero and the dynamics of the sensitivity is known (2.43), we can
compute (2.44) by propagating this evolution from 0 to T :

θ̄ =

∫ T

0

d

dt

(
x̄(t)

∂x(t)

∂θ

)
dt. (2.45)

1note that here it would be wrong to write θ̄ = x̄(t)∂x(t)∂θ for t 6= T because a variation of θ yields a variation of
the x(s), s > t.
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Differentiating (2.44) with respect to time (or depth) t, we compute :

d

dt
x̄(t)

∂x(t)

∂θ
=

dx̄

dt

∂x(t)

∂θ
+ x̄(t)

d

dt

∂x(t)

∂θ

= −x̄ ∂f
∂x

(
x(t), θ

)∂x(t)

∂θ
+ x̄(t)

(
∂f

∂x

(
x(t), θ

)∂x
∂θ

(t) +
∂f

∂θ

(
x(t), θ

))
= x̄(t)

∂f

∂θ

(
x(t), θ

)
.

(2.46)

where we replaced the time derivatives of x̄(t) and ∂x/∂θ with equations (2.40) and (2.43). Integrating
this quantity allows one to compute the adjoint of θ :

θ̄ =

∫ T

0
x̄(t)

∂f

∂θ

(
x(t), θ

)
dt, (2.47)

provided we can compute the derivative ∂f/∂θ. This can be achieved automatically when f itself is
an AD layer for example. Here again, the adjoint equations (2.40) and (2.47) are integral equations of
the same type and complexity as the forward equation (2.37).

When the loss L depends explicitly on points of the trajectory other that x(T ), it is possible to
derive a more general relation similarly [22].

2.6.4 Neural differential equations

Given an ODE with parametric flow fθ, we derived integral formulas for the adjoints of the input
and the parameter. The integrands are functions of the derivatives ∂f/∂x and ∂f/∂θ. Even though
these derivatives cannot be evaluated analytically, the integration can still be carried out numerically
provided f has an AD implementation. In particular this is the case when f is a neural network. Then,
the layer defined by the ODE is called a neural ODE [12].

Interestingly, a neural ODE can be thought of as the continuous limit of a residual neural net. A
residual cell learns residual functions of the activations: xt+1 = xt + fθ(xt) [23], as represented on
figure 3. A residual net (or ResNet) is build by stacking residual cells. Assuming that the weights are
constant along the depth of the network t and taking the continuous limit, the activations are solutions
of the following autonomous system [12]:

dx

dt
= fθ(x). (2.48)

Following this analogy, the values of the activations (xt) are trajectories of the flow fθ along depth t,
hence forming an ODE layer as defined in (2.37).

+... ...

layer depth t

xt

fθ

fθ(xt) xt+1 = xt + fθ(xt)

neural net

Figure 3: ResNet architecture. The layer fθ learns the residual of the activations.
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3 Learning dynamics from physical principles

Here we propose an application of neural ODEs to a problem of thoeretical physics. Let T > 0 be a
time period. Which potential energy functions U yield T -isochronism for the one-dimensional physical
system ẍ = −U ′(x) ? Under mild assumptions, one can check that the only symmetric potentials
satisfying this property are harmonic : U(x) ∝ x2.

Contribution In this section we propose to recover this uniqueness result experimentally by training a
neural differential equation [12] to satisfy global T -periodicity. We also propose a theoretical derivation
which simplifies that we found in the litterature [24].

3.1 The problem of isochronism

Isochronism is the property for a physical system of having a period that is independent of the
motion’s amplitude. Such a property allows one to measure time reliably, be it by the means of a
pendulum or of a quartz crystal [24]. Consider a one-dimensional physical system

ẍ = −U ′(x), (3.1)

where we chose a unitary mass without loss of generality. It is well known that the quadratic po-
tential U(x) = 1

2ωx
2 yields a harmonic, isochronic motion of period T = 2π/ω. We are interested

in the following converse question : given a fixed time T > 0, are there other such symmetric func-
tions U ? In mathematical terms, for which symmetric functions U do the dynamics (3.1) yield
T -periodicity X(T ) = X(0) for all the trajectories X = (x, ẋ)>, i.e. for all initial conditions X(0) ?
It turns out that under mild assumptions, the harmonic potential is the only solution [24] :

U(x) ∝ x2. (3.2)

We apply neural ODEs to address this problem experimentally. We also present a mathematical
proof of the result.

3.2 Learning the flow

As stated before, neural ODEs allow us to train the flow of an ODE by imposing a loss function on
its trajectory. We hence parametrize the dynamics (3.1) in the following way

ẍ = fθ(x), (3.3)

where the neural network fθ(x) approximates the force field f(x) = −U ′(x). Our objective is to yield
T -periodic trajectories, so we want to optimize

min
θ
‖Xθ(T )−Xθ(0)‖2 . (3.4)

We give a schematic view of the training pipeline in figure 4.

Experimental setup In our experiment, we trained our network to the objective (3.4) on a dataset
of N = 100 random points of the phase portrait Xi ∼ N (0, 1), 1 ≤ i ≤ N and with T = 2π. We
take for fθ a 2-layer fully connected architecture with width 16 and tanh nonlinearity. We used the
Python package torchdyn [25] which is built on torchdiffeq [12]. Our implementation is available at
https://github.com/MB-29/neural-dynamics.

Results Our results are summarized in figure 5. The circular trajectories centered on the origin in
the phase space show that the potential converged to U(x) = 1

2x
2. Hence, the phase portrait is that

of a harmonic oscillator with angular frequency ω = 1, which does equal 2π/T . We further check that
the flow converges to the restoring force f(x) = −x. Note that we didn’t impose any fθ to be an
odd function, or any symmetry assumption. In particular, translating the center of the phase portrait
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a

neural net

initial condition

objective functional

gradient backpropagation

dynamics trajectory lossparameters

forward pass

θ
solve(a, θ)

xθ(t) L[xθ, θ]fθ

Figure 4: The pipeline for the training of a neural ODE representing the flow of some dynamics.

horizontally would yield the same loss and thus corresponds to an equally valid solution. This makes
perfect sense as without any symmetry assumption, harmonic trajectories centered on any point of the
real axis satisfy isochronism.

−1 0 1

x

−1

0

1

ẋ

epoch 1

−1 0 1

x

−1

0

1

ẋ

epoch 50

Figure 5: Evolution of the phase portrait after 50 training epochs.

3.3 Theoretical derivation

We prove here that harmonic potentials (3.2) are the only symmetric potentials yielding isochro-
nism. Our computations are inspired by, yet different from that of [24], as ours focuses on symmetric
potentials.

Let U(x) denote the potential energy. We assume that U is a symmetric function, and is increasing
on R+ (and hence decreasing on R−). It hence admits a global minimum at 0. The conservative
dynamics (3.1) yields trajectories with constant energy

E =
1

2
ẋ2 + U(x). (3.5)

Hence, the momentum ẋ can be expressed as a function of the position x :

ẋ = ±
√

2
√
E − U(x). (3.6)
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epochs

101

training loss

Figure 6: Loss curve for the training of objective (3.4).

Now assume that all trajectories following the dynamics (3.1) are T -periodic. The two extreme points
of the trajectory are symmetric with restpect to 0 because the potential is symmetric. The turning
points are x = ± y, where the amplitude

y = y(E) > 0 (3.7)

solves
ẋ = 0 at x = ± y(E), (3.8)

or, equivalently,
U
(
± y(E)

)
= E. (3.9)

Since the travel time from 0 to y is equal to that from y to 0, the quarter of the period equals

T/4 =

∫ y(E)

0
dt (3.10)

=

√
2

2

∫ y(E)

0

dx√
E − U(x)

. (3.11)

Changing variable to u(x) = U(x)/E yields

T/4 =

√
2

2

∫ 1

0
x′(uE)

√
uE

du√
u(1− u)

, (3.12)

where x(U) is the inverse function of U(x). Let g(U) = x′(U)
√
U . Since there is a one-to-one

correspondance (3.9) between the oscillator amplitude y and the energy of the system E, isochronism
means that the integral ∫ 1

0
g(uE)

du√
u(1− u)

(3.13)

is constant with respect to E ∈ R∗+, which implies that g is constant. Indeed, if v := inf{u, g(u) 6=
g(0)} < +∞, taking E = v + ε with small ε > 0 and E → 0 yield different values for the integral
(3.13). Therefore x′(U) ∝ 1/

√
U and

U(x) ∝ x2. (3.14)
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3.4 Discussion

This section showcases a novel application of neural ODEs, where we trained a neural network to be
the flow of a differential system by imposing a loss on its trajectories. We recovered a theoretical result
from mechanics experimentally, for which we also provided an analytical proof. Our experimental
result perfectly matches the theoretical one although we didn’t impose any symmetry constraint in our
experiment, meaning that the harmonic oscillator is only a local minimum of the loss (3.4) and that
the neural net could have converged to other phase portraits.

Remarkably, our the training objective of this problem is completely implicit. We defined a loss over
the trajectories of a second order ODE, which are implicitly defined with respect to the underlying
neural layer. It would be interesting to conduct this kind of approach in other fields, replacing time
invariance with other types of symmetry.
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4 Neural optimal control

As seen in section 2, automatic differentiation and adjoint methods allow us to optimize a loss
through a differential equation. This relates quite naturally to the field of optimal control theory,
where one seeks to choose the best function so as to optimize a loss over the trajectory of a differential
system. Furthermore, seeing the neural ODEs through the prism of control theory may lead to efficient
model-based deep reinforcement learning.

Contribution In this section, we highlight the connection between neural ODEs and neural optimal
control. We propose experiments applying neural control to a navigation problem and to the cartpole
problem (inspired from [26]).

4.1 Optimal control framework

A controlled dynamical system is a system whose state is driven by dynamics of the form

dx

dt
= f

(
x(t), u(t)

)
, (4.1)

where f is a known function and u(t) is the control of the operator. The operator seeks to find the
best possible function u with the aim of optimizing some loss function L of the trajectory x and the
control u. Formally, this consists in solving the following minimization problem

min
u

L[x, u]

such that
dx

dt
=f(x, u).

(4.2)

In a control problem as formulated in (4.4), the objective functional depends on the control function u
implicitly, since the trajectory x is obtained by integrating a u-dependent flow. In some cases, the
optimal solution can be derived analytically using tools like Pontryagin’s maximum principle and the
Hamilton-Jacobi-Bellman equation [27].

We adopt a differential programming point of view. Take for u a neural network, or any AD-
compatible function, parametrized by some weights θ. We assume here that u is a function of the
current state :

u(t) = uθ
(
x(t)

)
. (4.3)

Then setting gθ(x) = f
(
x, uθ(x)

)
the optimization problem (4.2) can be expressed in terms of θ :

min
θ

L[xθ, θ]

such that
dxθ
dt

= gθ(x).
(4.4)

This equation has the form of (2.48), meaning that a neural controlled dynamics problem may be
trained like a neural ODE. In particular, we can perform gradient descent on the weights θ to find the
best possible control parameters for (4.2).

This approach differs with the established theories for solving optimal control like Pontryagin’s
maximum principle and the Hamilton-Jacobi-Bellman equation. Although both of these methods rely
on an adjoint differential equation to compute the gradient of the loss with respect to the control, they
provide analytical equations to determine the optimal control. In contrast, neural optimal control aims
at obtaining an approximate solution of the problem iteratively by the means of gradient descent.

It is also interesting to draw a parallel between neural optimal control and deep reinforcement
learning. Reinforcement learning (RL) casts a stochastic optimal control problem into Markov Decision
Process (MDP), where an agent evolves in a state space and interacts with an environment by taking
actions, with the aim of maximizing a reward function [28]. In a continuous setting where the state
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of the MDP is analog to the system state x(t), the states are governed by the dynamics (4.1) and
hence by the action taken by the agent according to a neural-network policy, which is analog to the
control u. The reward is analog to minus the loss, and optimizing the policy amounts to finding the
optimal control. Following this analogy, we will see in section 4.3 that neural optimal control allows us
to tackle reinforcement learning problems in a continuous-time, continuous-state and continuous-action
setting. More specifically, this analogy relates to model-based reinforcement learning, where the agent
has (partial) knownledge of its environment. We refer to [29] for a survey on model-based RL.

In this section, we apply neural ODEs to two well-known optimal control problems.

4.2 Zermelo’s navigation problem

Zermelo’s navigation problem is a classic optimal control problem where the objective is to control
a ship to to reach a certain point in space in a windy environment with some optimality criterion [30].
Although the goal is usually to reach the objective with time optimality (i.e. in minimum time) [31],
we will study an example with a spatial criterion.

Consider a ship whose goal is to cross a windy river with minimum deviation. At time t = 0, the
ship is located at the origin (x, y) = (0, 0). Its goal is to reach the opposite bank y = ` with minimal
deviation x(T ). In absence of wind, it has constant speed v. While corssing the river, the wind w(y)
pushes it towards the right, the magnitude being a known function of y such that w(y) > v ∀y. The
pilot chooses the angle u of the ship with respect to the shore. We give a representation of the system
in figure 7. The ship obeys the following 2-dimensional dynamics :

ẋ = v cosu+ w(y)

ẏ = v sinu
(4.5)

and the control problem takes the form

min
u

x(T )

such that (4.5).
(4.6)

This optimal control problem can be solved by Pontryagin’s maximum principle [27]. The solution
can be expressed as a function of the current position (see [22] page 76 for example):

cosu(t) = − v

w
(
y(t)

) . (4.7)

We propose to recover this result experimentally by parametrizing the control by a neural network uθ(t),
and by training it to optimize (4.6). Neural ODEs allow us to implement the dynamics (3.1) with the
neural control and to backpropagate through the trajectory Xθ.

Experimental setup In our experiment, we choose for uθ a 2-layer fully connected net with width 16
and tanh nonlinearity, followed by a sigmoid layer and an affine function to ensure 0 ≤ uθ ≤ π. We
train this net with the Adam optimizer [7] that we initialized with a learning rate of 0.05. We set
` = 2, v = 1 and use a Gaussian wind profile w(y) = wmin + (wmax −wmin) exp

[
−(y − `/2)2/(`/10)2

]
,

with wmin = v + 0.1 and wmax = 2v. We choose a large time horizon T > 0 to ensure that the shore
is reached in the first iterations, and set the wind to 0 beyond y = `. For this task, we use Julia
programming language with the library DiffEqFlux.jl which implements neural ODEs [32].

Results The training loss L(θ) = xθ(T ) minus the optimal loss given by integrating the optimal
trajectory is plotted on figure 9. Figure 8a shows the neural trajectory after training, as well as
the optimal trajectory and the naive trajectory obtained with u(t) = π/2. The obtained trajectory
converged to the optimum, proving that the neural ODE learned the optimal control. We can further
check that the optimal control has been learned by plotting the control values as shown on figure 8b.
We note however that the loss curve is somewhat irregular and lacks smoothness, suggesting that
training could be unstable at a low number of iterations.
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Figure 7: Minimum deviation problem.

4.3 Cartpole

Cartpole, also known as inverted pendulum, is a well-known problem in the field of reinforcement
learning. An agent can move the pivot point of a pendulum left and right and his goal is to drive and
keep the pendulum in its upright unstable equilibrium. This problem can naturally be described in the
framework of optimal control theory. Cartpole is also a reference environment to test RL algorithms.
It is available in the OpenAI toolkit [33] in a simplified form, where the pole starts upright and the
space of actions is reduced to two elements : "push left" and and "push right". This environment was
described by Barto, Sutton, and Anderson in 1983 [34].

We are interested in solving the carptole problem with its full dynamics, which we can derive with
classical mechanics. Parametrizing the system as in figure 10, the Lagrangian of the system is

L(x, ẋ, φ, φ̇) =
1

2
Mẋ2

+
1

2
m

(
d

dt
(x+ L sinφ)

)2

+
1

2
m

(
d

dt
cosφ

)2

−mgL cosφ.

(4.8)

The control of the operator is materialized by a horizontal force of magnitude f . The Euler-Lagrange
equations yield the following non linear evolution equations

ẍ =
f +m sinφ(Lφ̇2 − g cosφ)

M +m sin2 φ

φ̈ =
−f cosφ−mLφ̇2 sinφ cosφ+ (M +m)g sinφ

L(M +m sin2 φ)

(4.9)

Our approach is inspired by [26] We implement dynamics (4.9) and we model f by a neural net-
work fθ(x, ẋ, φ, φ̇). We train fθ to optimize the following objective

min
θ

φ2(T ) + φ̇2(T ). (4.10)
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(a) Learned trajectory.

(b) Values of the control uθ(w) in an experiment
where u is chosen to be a function of w(y).
The neural control learned an approximation
of the optimal control cosu(w) = −v/w (equa-
tion (4.7)).

Figure 8: Results after training the neural control.

Figure 9: Training loss for objective (4.6).

Interestingly, the linear regime |φ| � 1 is solvable analytically. Indeed, the system fits into the
linear-quadratic regulator (LQR) formalism where Riccati’s equation applies [27] and gives the optimal
control. We refer to [35] for a formal mathematical description.

Experimental setup In our experiments, we initialized the pole at its stable equilibrium position
φ = π. We set the time horizon to T = 2 and the physical quantities equal to m = 1, M = 1,
L = 1, g = 9.8. For the neural control we took a 2-layer fully connected net with width 16 and tanh
nonlinearity. We trained it with the Adam optimizer [7] that we initialized with a learning rate of
0.05. Here again, we used Julia library DiffEqFlux.jl. We also experimented in the linear regime
with LQR parameters Q = diag(10−4, 0, 100, 0), and R = 10−2.

Results The loss over the training epochs is represented on figure 12. On figure 11, we show the
states of the system at the final time T at different stages of the training. As we can see, the pole
ends upright after 100 episodes. Then next episodes reduce the final angular velocity. The neural net
is hence successfully learning the optimal control after a few hundreds of epochs. On figure 13, we
plot the neural control obtained after 16 epochs and the corresponding time evolution of the angle φ
together with the exact solution obtained with Riccati’s equation. As we can see, the two curves are
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Figure 10: The cartpole system

close, meaning that the neural net successfully learned the linear Riccati mapping U = −KX [27].

(a) Episiode 1 (b) Episiode 10 (c) Episiode 100

Figure 11: Last frame of the system evolution at different training episodes.

4.4 Discussion

Neural ODEs allow one to tackle continuous-time optimal control problems using gradient descent
by modelling the control with a neural net and by propagating the gradient in a neural ODE. Our
results show that this approach is successful at modelling and solving some classical problems. Since
most physical systems can be described by ODEs, it could generalize gradient-based optimization and
model-based reinforcement learning to a very large spectrum of applications.

Although it is suggested that this novel ODE-based technique could allow for faster training [26], a
thorough benchmark with traditional RL techniques is yet to be carried out. It would be interesting to
compare the performances of both approaches on similar control problems. In [31] for example, Biferale
et al. tackle a 2D navigation problem with an actor-critic algorithm by discretizing the action space
of navigation angles. Using neural control allows one to use continuous actions and might hence prove
more succesful at learning the optimal navigation. Likewise, prior work on the cartpole focused on
the simplified, linearized RL environment with binary inputs. Recently, Yıldız et al. [36] used neural
ODEs combined with an actor-critic algorithm to tackle RL problems in a continuous-time fashion.
In this respect, they desined a new RL framework with compatible environments. Their results show
that neural control can learn complicated continuous-time controls, proving the method to be robust
and efficient. This work could pave the way for a novel, continuous-time RL framework. In particular,
an interesting research direction is that of learning the environment dynamics, which can be done by
inferring ODE parameters.
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Figure 12: Training loss for objective (4.10).

Figure 13: Neural control after 16 epochs of training versus the analytical solution for the LQR cartpole.
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5 System identification

System identification is a problem of great importance in many fields such as econometrics, rein-
forcement learning, robotics or mechanical engineering [37][38][39]. The task consists in estimating the
dynamics of an unknown system by sampling trajectories from it. We focus here on linear systems :
let A ∈ Rd×d and B ∈ Rd×m be two matrices. Consider the linear, controlled dynamical system

xt+1 = Axt +But + wt, 0 ≤ t ≤ T − 1,

x0 = 0
(5.1)

where xt ∈ Rd is the state, wt ∼ N (0, σ2) is normally distributed noise and the control ut ∈ Rm is an
input variable chosen by the operator with some energy constraint

1

T

T∑
t=1

‖ut‖2 ≤ γ2. (5.2)

We further assume the condition ρ(A) ≤ 1 on the spectral radius of A which ensures that the system
is stable and controllable [27].

The goal of system identification is to choose the best input sequence (ut) to estimate the unkown
matrix A. Note that it may be that B is unknown as well and we want to estimate both A and B.
In this case the results for estimating A can be extended [40]. In this work, we will assume that B is
known.

There has been substantial work in the field of system identification. Recent papers have provided
sharp bounds for the estimation of A in the passive case, where ut = 0 and the input is reduced
to noise [41]. Recently, significant attention has been given to the question of the best input for
system estimation, be it for linear [42] or nonlinear systems [40]. This recent line of work has focused
on providing optimal theoretical rates for this task, but little attention has been paid to efficient
algorithm implementations.

The fundamental difficulty in this control problem lies in that the variables xt that produce our
estimate of A depend on the unkown matrix A itself. As a consequence, one can not directly optimize
the trajectory with respect to the control in an exact way. What one can do however is to iteratively
update an estimate Â of A, and optimize over the trajectories as if this estimate was the ground
truth. This approach is refered to as adaptive experimental design and is described and analyzed by
Wagenmaker and Jamieson [42]. We will review it in section 5.3.

The algorithm of [42] relies on solving a complex optimal control problem, for which no efficient
numerical method is provided. We propose a novel optimization technique based on automatic differ-
entiation to address this issue.

Regardless of the trajectory optimization, one estimates A by least squares regression over the
observed trajectories of the system (5.1), which is proved to be nearly optimal for this task [40].
Therefore, we start by reviewing the main concepts of Ordinay Least Squares in the next section.

Contribution In this section, we propose a novel approach to solve a planning control problem based
on AD and provide experiments illustrating the effectiveness of our method. We also recall mathemat-
ical concepts of least square regression and the adaptive algorithm of [42] which implements planning.

5.1 Ordinary Least Squares

Least squares is a standard approach in regression analysis for noisy observations. Here we briefly
recall its mathematical foundations and then adopt an active learning point of view.
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5.1.1 Mathematical framework

Consider noisy observations of some linear relation

Y = Xβ + η, X, Y ∈ Rn×d, η ∼ N (0, σ2I). (5.3)

The unknown here is the matrix β ∈ Rd×d and the goal is to estimate it from the noisy observations Y .
The least squares estimator of β is the solution of

min
α
‖Y −Xα‖2 (5.4)

and is equal to
β̂(X) = (X>X)−1X>Y ∈ Rd×d, (5.5)

yielding the residual
β̂(X)− β = (X>X)−1X>η. (5.6)

Hence for some realization of the noise η, the error in OLS is∥∥∥β̂(X)− β
∥∥∥2 =

∥∥∥(X>X)−1X>η
∥∥∥2 . (5.7)

We define the loss as the expectation of (5.7) :

L(X) = E

[∥∥∥β̂(X)− β
∥∥∥2] . (5.8)

Let s1, . . . , sd ≥ 0 be the singular values of X, and let

S =

(
diag(s1, . . . , sd)

0

)
. (5.9)

Then the singular value decomposition of X is

X = USV >, U ∈ On(R), V ∈ Od(R). (5.10)

The loss (5.8) may thereby be expressed as a function of the singular values 0 ≤ s1 ≤ · · · ≤ sd of X
[43] :

L =
d∑
i=1

1

si2
. (5.11)

5.1.2 Active learning for least squares

The control problem induced by equation (5.1) poses the question of determining the best trajec-
tory (xt) for an optimal estimation of A. We are first interested in the following question : what is is
the best choice of x1, . . . , xn to estimate A at a fixed variance budget, i.e. such that the total variance
is bounded by some constant :

1

n

n∑
k=1

xk
>xk ≤ r2 ? (5.12)

Following the previous expression of the estimation error (5.11), we consider the optimization problem

min
X

n∑
i=1

1

si2(X)

such that
1

n
tr(XX>) ≤ r2.

(5.13)

Alternatively, another problem considered in the system identification framework is [42]

max
X

s1
2(X)

such that
1

n
tr(XX>) ≤ r2.

(5.14)

23



The objective functions and the constraints of problems (5.13) and (5.14) depend only on the singular
values of X. For example, (5.13) is reduced to

max
0≤s1≤···≤sd

s1

such that
1

n

d∑
i=1

si
2 ≤ r2.

(5.15)

Then, all solutions of (5.13) are obtained my multiplying S =

(
diag(s1, . . . , sd)

0

)
by orthogonal ma-

trices on the right and on the left. The optimum is reached at

s1
2 = · · · = sd

2 = r2/d. (5.16)

This choice also minimizes (5.13) by Jensen’s inequality. This result tells us that in the ordinary least
squares framework, the best estimation is achieved when the inputs are chosen such that the point
cloud is isotropic (the variance according to all directions should be the same) and with maximum
variance.

5.2 Optimal control for system identification

Now that we recalled a few notions about OLS, let us get back to our dynamics problem. As we
mentioned, we base our estimate of A on observed trajectories (xt) by performing OLS :

Â ∈ argmin
β∈Rd×d

T−1∑
t=1

‖xt+1 −But − βxt‖2 . (5.17)

We do not choose the points xt directly, but we choose the control values (ut) which determine (xt)
through (5.1). The question is : how to choose (ut) ? Formally, we wish to have Â as close to A as
possible :

min
u

∥∥∥Â−A∥∥∥2 . (5.18)

This objective is not explicitly defined since A is not known and Â depends on (xt) through (5.17)
and hence on the unknown A. However, we know from the theory of least squares that the relation
Y = AX is best estimated when X has large singular values, in the sense of equations (5.13) and
(5.14). Let

X =

T∑
t=1

xtxt
> (5.19)

be the design matrix of the system. Expression (5.11) is not valid in our case because of the
dependence between the xt introduced by the dynamics. Yet, the analysis of [41] shows that the
estimation error may be bounded by a function of the key quantity smin (X). From there, we can
formulate an objective in terms of u and X and hence define an acutal optimal control problem for u :

max
u1,...,uT

smin

(
T∑
t=1

xtxt
>

)

such that (5.1) and
1

T

T∑
t=1

ut
>ut ≤ γ2.

(5.20)

The hope behind this definition is that maximizing this surrogate objective for the least squares error
in our particularly entangled case will make our trajectory approximately optimal for the estimation
of A. Note however that although we casted our objective into an optimal control problem, it is still
not completely explicit because the dynamics (5.1) is unknown.
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5.3 Adaptive experimental design

As we pointed out, problem (5.20) is still ill-posed since the dynamics yielding the first constraint
is unknown, and is actually precisely what we want to find. A natural way to face this difficulty is to
proceed iteratively, by alternating between planning and estimation.

First, given an estimate Â of A, one optimizes a surrogate of (5.20) where the true dynamics is
replaced by the estimated one :

xt+1 = Âxt +But + wt, 1 ≤ t ≤ T. (5.21)

This phase is called planning, and can be formulated as

max
u1,...,uT

smin

(
T∑
t=1

xtxt
>

)

such that (5.21) and
1

T

T∑
t=1

ut
>ut ≤ γ2.

(5.22)

Second, one plays the planned optimal control and observes the resulting trajectory. The observations
are then used to update one’s estimate Â by least squares regression (5.5).

Following this principle, Wagenmaker et al.[42] propose an asymptotically optimal algorithm con-
sisting in two phases. This approach proceeds in epochs of geometric length and is summarized in
algorithm 1.

Algorithm 1: Adaptive active system identification
Input: nepochs, energy γ2

Result: control ut
initialize ut as white noise with the energy constraint;
observe a first trajectory xt and append it to X ;
for 1 ≤ i ≤ nepochs do

estimation : Â = OLS(X);
planning : ut = Planning(Â, T ) ;
play the dynamics with ut, observe xt ;
append xt to X;
T = 3 ∗ T ;

end

Since planning consists in optimizing a version of (5.20) where the true dynamics A is replaced with
the current estimate Â, the approximation error of Â creates a bias. The optimization problem being
an approximation of the desired one, the obtained solution can only be an approximation of the optimal
control. Yet, the theoretical analysis [42] proves that this approach does converge with asymptotically
optimal rate. These theoretical bounds are out of the scope of our work.

The main bottleneck of this approach lies in solving (5.22) efficiently. The authors of [42] mention
that they proceed by an alternating minimization technique but do not elaborate on their approach.
In the following, we propose a new method for planning based on automatic differentiation.

5.4 Differentiable planning

There are two major difficulties in optimization problem (5.22). First, we are optimizing a functional
over a trajectory whose states are mutually dependent through the control. Second, this functional is
an implicit function based on a nonlinear algebra operation, namely singular value decommposition.
As it turns out, both of these can be tackled by the means of automatic differentiation.
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Integrating the trajectory (5.1) is a sequence of T elementary operations which can be differentiated
through. The noise can be considered as an external quantity and does not intervene in the backprop-
agation step — backpropagating with fixed noise is related to the so-called "reparametrization trick"
as introduced in [44]. It is also conceivable to extend our approach to the continuous limit with neural
ODEs with the use of the adjoint method for backpropagation as described in section 2.6.4, which
allows for memory savings.

As for SVD, we showed in section 2.5 that this operation is AD-compatible and we derived a closed
formula for its adjoint. Therefore, the whole minimization program can be solved by automatic differ-
entiation and gradient descent. Our approach is illustrated in figure 14.

θ u x1, . . . , xT
dynamics SVD

wt

parameters control

neural net

trajectory

L
loss

s1, . . . , sd
singular values

criterion

noise

Figure 14: The training architecture for differentiable planning.

We change the total energy constraint
∑
ut
>ut ≤ Tγ2 by ut>ut ≤ γ2 ∀t. This allows us to readily

implement the energy constraint by normalizing the output of the control.

5.5 Experimental results

We implement this adaptive identification algorithm in the automatic differentiation framework and
compare it to an oracle and to the baseline of [42]n which consists in normally distributed controls of
mean energy γ2 : ut ∼ N (0, γ2I/d). The oracle has access to the true dynamics matrix A and plans
according to (5.20), with the same optimization method as the active learning agent.

Experimental setup We experiment our method on different types of unknown dynamics matrices A.
We restrict ourselves to B = I. We choose σ = 0.1, γ = 1. We choose the control to be a neural
net function of both the current state and the time : ut = uθ(xt, t). We parametrize it as a 2-
layer fully connected net with width 16 and tanh nonlinearity. The estimation error is compared to
that of the Gaussian baseline averaged over 1000 realizations. We implement our experiments with
Pytorch [20] which implements differentiable SVD. Our code is available at https://github.com/
MB-29/differentiable-SysID.

Results Our results are presented on figure 15. The active learning algorithm outperforms the baseline
and its performance matches that of the oracle algorithm, like in the work of Wagenmaker et al.. We
noted that the planning phase can get slow, due to the exponential times of the algorithm. We could
accelerate it using GPU parallelization.

5.6 Discussion

We propsed a gradient-descent-based numerical approach for optimal design planning. Our results
prove its efficiency on different types of matrices. Together with an adaptive algorithm, it can hence
be used to solve the system identification control problem.

Our approach offers the advantage to be based on deep learning, thereby allowing one to parallelize
the training on a GPU and guaranteeing the control to be arbitrarily expressive. Moreover, the control
can be defined as a function of both the time and the current state, which is arguably a key for greater
efficiency to mitigate transient effects [45][42]. A point we did struggle on is that of training the
net which can be slow due to the large number of operations we differentiate through, and the SVD
operation sometimes yields singular matrix exceptions. We can face this issue by carefully choosing the
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Figure 15: Estimation error for different types of A.

learning rate of the optimizer, by regularizing the matrices [46] and possibly by taking a continuous-
time perspective so that we can apply ODE adjoint equations.
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6 Experimental design

In all scientific problems, experiments are a fundamental step as they are the only possible way
to collect data and thereby to confront a theory or a model to reality. However, it is often resource
consuming to perform real-world experiments, be it computer simulations (e.g. for fluid dynamics [47]
or particle physics [48]) or in real life. Therefore, being able to choose the best conditions (in a sense
yet to define) that guarantee an experiment to be as efficient as possible is of a paramount importance.

Optimal experiment design seeks experiments that maximize some criterion over their expected
output. The objectives underlying these criteria include parameter infererence, prediction and model
discrimination [49]. In essence, experimental design answers the question "where to collect data in
order to gain maximum information and minimum cost ?" [50].

Most recent publications in the field of Bayesian Optimal Design have focused on developping algo-
rithms to estimate and optimize untractable crtieria for optimal design, including nested Monte-Carlo
simulations, Polynomial Chaos surrogates and variational approximations. [51][52][49][53][54].

In our approach instead, we use a linear approximation and consider a simpler, tractable utility
criterion. We then leverage automatic differentiation to compute gradients of our model with respect to
the parameters and the inputs, allowing for gradient-based search of the optimal design. It has already
be noted that although exact inference is intractable in implicit models, computing the gradients
through the latent variable brings precious information, see for example [55]. We take a similar path
and try to "mine gold" from the simulator to optimize experimental design.

Contribution In this section, we propose a new approach of local Bayesian optimal design based
on automatic differentiation. We provide experimental results on a toy model. We also recall the
mathematical framework for experimental design.

6.1 Theoretical framework

Consider the parametrized modelling of some experiment :

Φ(x, θ), x ∈ Rd, θ ∈ Rm. (6.1)

Assume the experimenter is able to choose a design x and to measure some noisy realization of the
model under the optimal parameter θ∗ :

y = Φ(x, θ∗) + ε (6.2)

where the noise ε ∼ N (0, σ) is normally distributed. The goal is to infer the parameter θ from the
observations yi at minimal cost.

6.1.1 Bayesian framework

Finding an efficient design can be formulated as an optimization problem of some citerion U(x) over
the posterior distribution p(θ|x) :

max
x

U(x). (6.3)

Here we care only about the choice of one single design x. We will describe the case of multiple
designs in the framework of sequential optimal design in section 6.3.

A common criterion is that of mutual information : the optimal design must maximize the Kullback-
Leibler divergence from the posterior to the prior. Since y is unknown, the maximization is performed
on the expected value of the model [56] :

U(x) = Ey|x
[
KL
(
p(θ|yi, x), p(θ)

)]
. (6.4)
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From an information-theoretic viewpoint, the motivation of (6.4) is that the larger the divergence
between the two measures the smaller the entropy under the posterior ditribution, and so the best
the estimate of θ. In fact, one can show that the entropy difference of the two measures yields in
expectation the same criterion as the divergence [57] :

U(x) = Ey|x
[
S
[
p(θ)

]
− S

[
p(θ|yi, x)

]]
, (6.5)

where the entropy is defined as

S[p] = −
∫
p log p. (6.6)

Typically, the criterion (6.4) is intractable and evaluating it requires complicated computational
artifacts such as nested Monte Carlo sampling [49]. In the next section, we present an approach that
avoids those technical difficulties by deriving a linear approximation of the model.

6.1.2 Linear approximation and local optimality

Least squares regression as presented in section 5 corresponds to a doubly linear case where Φ is linear
in both x and θ. As we showed, the optimal design to perform inference of the regression parameter
corresponds to isotropic inputs with maximum variance (equation (5.16). From there, it is natural to
study the case where the model is still linear in the parameter θ, but without any assumption on the
dependence on x. Assume that we have a good guess θ̂ of the true parameter. A key quantity we will
consider is the x-dependent model sensitivity at our guess θ̂ :

g(x) =
∂Φ

∂θ
(x, θ̂). (6.7)

The sensitivity encodes the variability of the model with respect to the parameter. It is indeed natural
to choose inputs in areas where this variability is large so that one can discriminate between different
values of the parameter. This statement is illustrated on a simple example in section 6.4 .

In a region close to our estimate θ̂, we may expand Φ to the first order in θ − θ̂ :

Φ(x, θ) = Φ(x, θ̂) +
〈
θ − θ̂, g(x)

〉
+O

(
(θ − θ̂)2

)
. (6.8)

We assumed the observation noise to be additive and Gaussiain, so the likelihood of an observation y
is

p(y|θ) = exp

(
− 1

2σ2
(
y − Φ(x, θ)

)2)
. (6.9)

Assume a Gaussian prior
θ ∼ N (θ̂0, C0) (6.10)

on the parameter. Then, the linear approximation (6.8) yields a Gaussian distribution for y with
covariance matrix gg> 2. It follows that the posterior on θ is normally distributed with covariance.

C = C0 −
1

σ2 + g>C0g
C0gg

>C0 (6.11)

The entropy of this posterior equals

S =
1

2

(
1 + ln(2π) + ln detC

)
. (6.12)

Note that this quantity is actually independent of the actual observation y. This comes from the fact
that a Gaussian conjugate prior makes the posterior covariance independent of the observation. We
may then compute the expected information gain as defined by (6.5) :

2This also holds for non-Gaussian prior on θ provided the distribution can be expanded quadratically around the most
probable value [57].
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U(x) =
1

2
log

(
1 +

1

σ2
g(x)>Cg(x)

)
. (6.13)

Optimizing this creterion yields a so-called local optimal design due to the linear approximation (6.8)
[58]. A more detailed derivation can be found in [57]. Note that the mutual information criterion for
a Gaussian posterior is equivalent to the log-D optimality criterion in Bayesian optimal design theory

U(x) = −Ey|x [log det cov(θ)] , (6.14)

which measures the volume of the uncertainty ellipsoid in experimental design theory [51].

6.2 Differentiable minimum entropy

We can make use of automatic differentiation to compute the key quantity g(x) = ∂Φ/∂θ even for
complex, implicit models. Indeed, the gradient can be accumulated along the computational flow of
the model using automatic differentiation, as explained in section 2. Differential equations are a case
in point : we showed in section 2.6 a formula to compute the gradients with respect to parameters
through an ODE model.

There has been previous research on optimal design focusing on the linear approximation (6.8) with
normally distributed errors. In the fields of optimal design for chemical engineering and pharma-
cokinetics for example, this methodology is used to choose the best time to measure the state of a
dynamical system in order to infer parameters [59]. In this respect, one solves the adjoint differential
equation to compute the sensitivity of the ODE model. This is refered to as the "direct method" [60].
The strength of our approach is that it can be applied to any model or simulation provided with an
automatic differentiation implementation.

Let us now explain how to find an optimal design by using reverse-mode AD. We recall that our aim
is to maximize a quadratic function of the sensitivity U(x) = g(x)>Cg(x), with g(x) = ∂Φ/∂θ(x, θ̂),
at fixed θ = θ̂. We optimize this function by gradient ascent using AD. For this matter, we need to
specify the forward and the backward passes for the function g(x).
For the forward pass, we first compute the model output Φ(x, θ). Since we assumed or model to be

endowed with AD with respect to x and θ, we may then compute the adjoint of θ in the evaluation
of Φ evaluated at θ = θ̂, yielding g(x). We record the operations giving g as a function of x in the
computation of this adjoint. This requires that the backward pass of θ 7→ Φ(x, θ) is itself automatically
differentiablew with respect to x.
For the reverse pass, we evaluate the loss U(x) as a function of g(x). With the operations from

the forward pass being tracked, we can backpropagate through x 7→ g(x) and hence compute the
gradient ∇U(x).

6.3 Sequential design

In many applications, decisions are made sequentially and one collects a sequence of observations.
For each observation, one can choose the design x based on what one has observed until then. In a
Bayesian framework, a natural way of proceeding is to start from a prior distribution on the model
parameter and to update the posterior after each observation, so that the design for the next experiment
is optimized with respect to the current posterior and hence to the current knowledge of the parameter.
This method is called bayesian sequential experimental design and we formalize it in algorithm 2.

In our framework where the model might be a complicated, implicit function, this approach poses
the question of inferring the parameters of the model. Performing Bayesian inference on probabilistic
models with intractable density — which are refered to as implicit models — is a complex problem
and a fully-fledge field of research. There exists many approaches to this problem, often refered to as
likelihood-free inference [61][55].

Likelihood for implicit models is not in the scope of this work. We perform inference on the linearized
model (6.8) for which the output variable is an affine function of θ, using standard Gaussian inference
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formulae. Assuming a Gaussian prior for θ, the posterior distribution is also Gaussian. Assume we have
already performed n experiences and are to choose the next design xn+1, which yields an observation
yn+1. Applying the formulas for a Gaussian conjugate prior with mean θ̂n and covariance Cn, the
posterior is parametrized by

Cn+1 = Cn −
1

σ2 + g>Cng
Cngg

>Cn (6.15a)

θ̂n+1 = θn +
1

σ2
(
yn+1 − Φ(xn+1, θ̂n+1)

)
Cng. (6.15b)

We can hence iterate parameter inference and design optimization and hope that our estimates con-
verge to the true parameter θ∗. As long as the first estimate of θ is close enough to θ∗ for the linear
approximation to be valid, each observation is expected to bring information and hence to make θ̂n+1

at least as close to the true value as θ̂n.

Algorithm 2: Sequential bayesian experimental design

Input: noise variance σ2, prior mean θ̂0 and covariance C0, number of samples N
Result: posterior mean θ̂N and covariance CN
for 0 ≤ n ≤ N − 1 do

Find the optimal design xn according to the current belief (θ̂n, Cn);
Run an experiment with design xn, observe yn ;
Update the posterior parameters (θ̂n+1, Cn+1) according to (6.15);

end

6.4 Application

Here we apply our differential entropy minimization method on a simple example. The encouraging
results we obtain suggest this method could prove efficient for more complex problems.

6.4.1 Exponential decay

First consider the following fairly simple model :

Φ(x, θ) = e−θx, x ≥ 0, θ > 0. (6.16)

Assume one can observe noisy realizations according to (6.2), with a prior knowledge centered in θ̂ = 1.
Where (at which x) should one measure y to best refine one’s knowledge of the parameter θ ? Although
the model is explicitly defined in terms of well-known functions, deriving the posterior distribution for θ
can be hard to carry out analytically, and the same goes for the computation of criterion (6.4).

Regardless of the criterion, the simple form of equation (6.16) lets us make a few observations. For
small x, any parameter θ will yield values of y close to 1. For large values of x, the model will essentially
yield y = 0. These two extreme inputs make outputs independent of the parameter, and are hence
unlikely to be relevant for our inference task. At intermediate x values however, the output varies more
or less with θ. This variation is described by the sensitivity (6.7). Computing the derivative at θ̂, we
obtain

g(x) = −xe−θ̂x. (6.17)

Intuitively, we should choose x where the model varies the most with respect to θ so that we can best
use an observation y to discriminate the true value of the parameter. This amounts to optimize

max
x

g2(x), (6.18)

which is reached at x = 1/θ̂. This is illustrated in figure 16 : x = 1/θ̂ is indeed the value for which
there is a maximum sensitivity to θ assuming the true parameter is θ̂.
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Figure 16: Noisy realizations of model (6.16) are plotted in black. The red line plot is the model output
for θ = 1 ; the red dashed line is the abscissa x = 1/θ̂.

This is precisely the sense of the result derived in section 6.1.2 in the one-dimensional case. Knowing
how much the output varies with respect to the parameter is a precious information about where one
should observe the ouput. The ability to calculate this quantity, be it analytically or by the means of
automatic differentiation, allows one to compute an approximate criterion (6.13) which describes the
information gain of the first order linearized model (6.8).
In the case of a multivariate parameter, the prior covariance matrix encodes the first order interde-

pendence of the components which are known a priori and determines the coefficients of the quadratic
loss.

6.4.2 Differential equation viewpoint

It is interesting to note that model (6.16) can also be seen as a more complicated model involving a
differential equation. Consider the following Cauchy problem :

du

dt
= −θu

u(0) = 1.
(6.19)

Let u(t, θ) be a solution of (6.19) for some parameter θ. Then an equivalent formulation (up to
renaming the variables) for (6.16) is

Φ(t, θ) = u(t, θ). (6.20)

This allows us to check that the sensitivity computed by automatic differentiation is equal to the exact
sensitivity we derived (6.17).

6.4.3 Design of observation times

In many fields, the model we are interested in is described by a differential system of the form

du

dt
= f(u, θ)

u(0) = u0,
(6.21)

where the parameters of interest are those of the flow f(u, θ). In these models, the experimenter chooses
the time of the measurements x = t [53][59], and the observable quantity is some scalar function of the
state u :
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Φ(t, θ) = u0 +

∫ t

0
f
(
u(s), θ

)
ds. (6.22)

In our approach, the key quantity is the model sensitivty

g(t) = ∇θΦ(t, θ̂), (6.23)

which we needs to be a differentiable function of t. Although differentiable solvers ensure automatic
differentiation with respect to the parameters and the input of the ODE, they do not implement differ-
entiation with respect to the integration time t, which prevents us from automatically obtaining dg/dt.
We here present a computational trick for the derivative dg/dt.

Since g(t) = ∂y/∂θ(t, θ∗)
>, by Schwarz’s theorem

dg

dt
=

∂2Φ

∂t∂θ

=
∂2Φ

∂θ∂t

=
∂

∂θ
f
(
u(t, θ), θ

)
.

(6.24)

This symmetry of the partial derivatives allows us to implement a differentiable sensitivity function
as follows. The forward pass is performed by the means of internal differentiation as explained in
section 6.2. For the backward pass, we simply differentiate through the computation of f

(
u(t, θ), θ

)
with respect to θ.

6.5 Experimental results

We test our AD-based method for experimental design on the toy model (6.20). We perform sequen-
tial bayesian experimental design as described by algorithm 2. At each step, the design is obtained by
differentiable minimum entropy 6.2 and the parameter posterior is updated by the Gaussian formulae
(6.15).

Experimental setup We implement differential model (6.20) in the torchdyn framework [25], which
allows automatic differentiation through the ODE. We optimize loss (6.13) and compute the sensitivity
using the trick introduced in section 6.4.3. We take θ∗ = 1.7 and choose a prior of mean θ̂0 = 2.0 and
covariance C0 = 1. We minimize the entropy criterion with the Adam optimizer [7] using a learning
rate of 0.1.

Results The results of this experiment are presented on figure 17. We plot the posterior parameters,
the design sequence and the error |θ̂n − θ∗| versus the iterations. The posterior mean converges to θ∗
and the posterior variance tends to 0, proving that our estimations converge with no bias and hence
that the approximate Gaussian inference updates are valid. We also note that the design obtained by
automatic differentiation of the sensitivity perfectly matches the analytical optimal design t = 1/θ̂.
This means that automatic differentiation successfully computes the model sensitivity and its gradient
with respect to the design, hence allowing gradient descent on (6.13).

6.6 Discussion

We introduced a novel tehnique for optimal design of experiments based on automatic differentiation.
We started by deriving a linear approximation of the model and the corresponding quadratic mutual
information criterion [57]. We then leveraged automatic differentiation twice to both compute and
differentiate the model sensitivity, hence allowing for a gradient-based search of the optimal design. We
also proposed a sequential design algorithm where inference is based on the same linear approximation.
We applied this inference method on a simple, yet implicit model and our results match theory.

33



1.8

2.0

m
ea

n θ̂

θ

10−1

va
ri

an
ce

0.45

0.50

0.55

in
pu

t t

1/θ̂

0 1 2 3 4 5
samples

10−1

10−2er
ro

r

Figure 17: Sequential optimal design for model (6.20). The design is obtained by computing the model
sensitivity by automatic differentiation and performing gradient descent.

This new approach is in contrast with the current research directions and could provide a new
method for optimal design. Still, the sequential design paradigm poses the question of how to infer the
parameters of implicit models. This is a very active field of research, and solutions based on automatic
differentiation have recently been proposed [55]. It might be interesting to combine our method for
optimal design with existing AD-based method for parameter inference.
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7 Conclusion

In this work, we studied deep implicit layers and applied them to a variety of applications. We
defined a theoretical framework for automatic differentiation and introduced some implicit layers with
a derivation of their adjoint equations. We then proposed applications to a variety of problems. We
used neural differential equations as a numerical optimization tool which allowed us to solve differential
equation optimization problems by gradient descent. We then proposed automatic-differentiation-based
methods for optimal design along with experimental evidence proving their efficiency.

Implicit layers provide an elegant way of posing a problem and integrating it into an differentiatiable
programming framework. They allow us to use and differentiate through advanced mathematical
techniques such as differential equations, matrix decompositions or thrird-party-variable derivatives.
Our results demonstrate that implicit layers allow for numerical optimization on a variety of new tasks
such as differential equations optimization, optimal control and experimental design. Besides, deep
implicit models inherit the advantages of deep learning including powerful gradient descent optimizers,
GPU parallelization and arbitrarily large expressiveness. Our experimental results match the already-
existing ones and the analytical solutions with great precision.

There are many interesting research directions linked to our work. Although implicit layers prove to
be very efficient for a variety of tasks, the way they learn remains poorly understood. The particular
weight-sharing, continuous architecture of neural ODEs for example, makes them arguably harder to
understand than classical neural nets. In our experiments, this materializes by somewhat irregular
training losses. It would be interesting to compare the loss landscapes of both of these types of layers.
More generally, implicit layers lack a solid theoretical background, as opposed to the more classical
approaches we faced. We also highlighted the connection between reinforcement learning and neural
control, which could bridge the gap between classical RL and continuous problems. This direction is
studied in [36] and could be further investigated. Finally, our approach of differentiable experimental
design exemplifies the general idea of studying complex, implicit models at the first order, an approach
that can lead to surprisingly general outcomes [62].
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