

Deep learning isochronism

Matthieu Blanke

DI ENS, INRIA Paris

The isochronism problem

Consider the 1D physical system

$$m\ddot{x} = -\frac{\mathrm{d}U}{\mathrm{d}x}.$$

For which U is the system **isochronic** ?

The harmonic potential $U(x) = \frac{1}{2}kx^2$ is one solution.

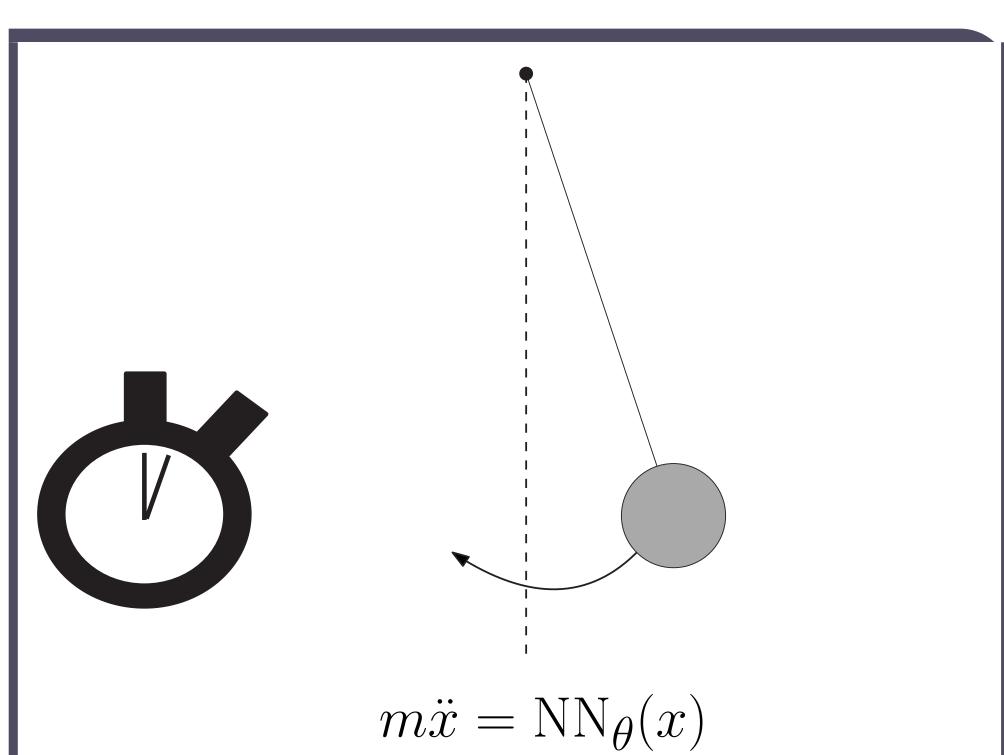
Question : are there other such symmetric functions U?

Answer : no, necessarily $U(x) \propto x^2$.

Approach

We retrieve this uniqueness result **experimen**tally with deep learning.

- Parametrize the unknown force field by a neural network.
- Impose periodicity with a loss on the trajectories.
- Train the neural differential equation.
- Compare the obtained phase portrait with that of the harmonic oscillator.

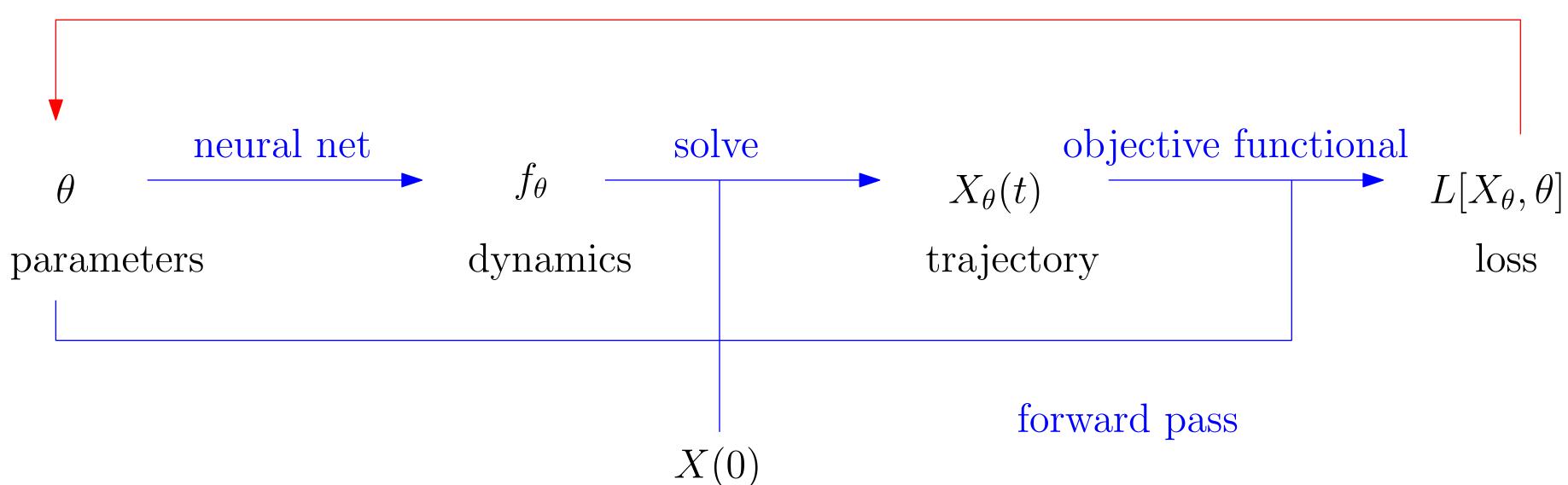


Neural differential equations

Neural differential equations parametrize the flow of an ODE by a neural net : $\frac{\mathrm{d}X}{\mathrm{d}t} = f_{\theta}(X)$. Given some loss $L[X_{\theta}, \theta]$, the gradient is backpropagated through the ODE [Chen *et al.*, 2018].

 \triangleright Learn a flow by imposing a loss on its trajectories.

gradient backpropagation



initial condition

Experiment

• Parametrize the dynamics

$$m\ddot{x} = f_{\theta}(x),$$

where $f_{\theta}(x)$ is a neural network approximating the force field f(x) = -dU/dx.

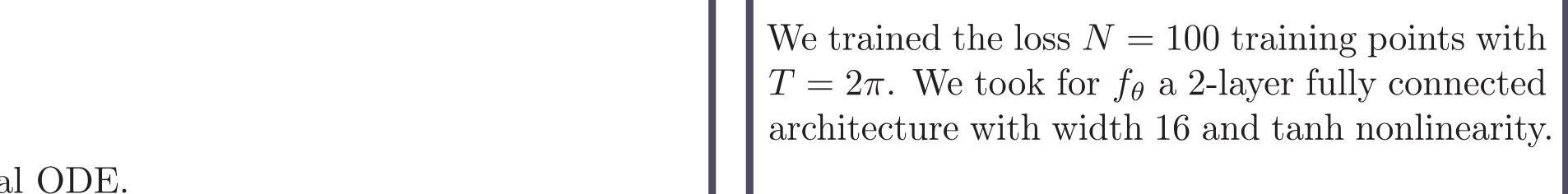
• Measure the **periodicity discrepancy** with the loss

$$L[X_{\theta}] = \left\| X_{\theta}(T) - X_{\theta}(0) \right\|^{2}.$$

• Optimize $\min_{\theta} L[X_{\theta}]$

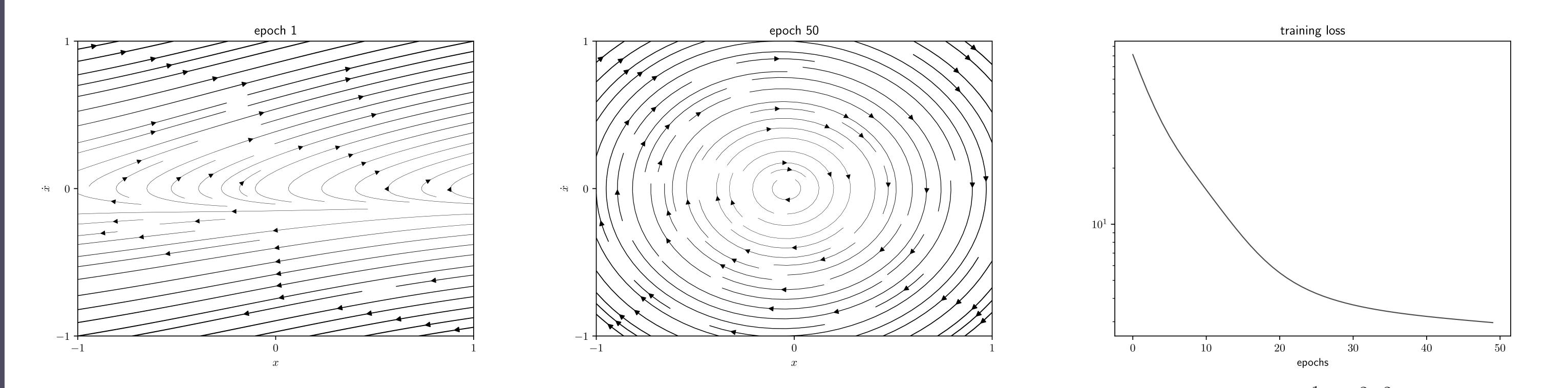
by gradient descent through the ODE, with random initial conditions

 $X(0) \sim \mathcal{N}(0, I).$



Architecture of a neural ODE.

Results



After training, the trajectories in the phase space are circular, meaning that the obtained neural potential is quadratic : $U(x) = \frac{1}{2}m\omega^2 x^2$, with $\omega = 2\pi/T$.

Theoretical derivation

Inspired from [Osypowski & Olsson, 1986]

• For some energy E, let y(E) denote the amplitude : $-y(E) \le x \le y(E)$.

• Write the period in terms of the energy : $T = 2\sqrt{2} \int_{0}^{y_{\text{c}}}$

$$\frac{\mathrm{d}x}{\sqrt{E-U(x)}}.$$

• Changing variables,
$$T = 2\sqrt{2} \int_0^1 g(uE) \frac{\mathrm{d}u}{\sqrt{u(1-u)}}$$
 with $g(U) = x'(uE)\sqrt{uE}$.

• This integral is a constant with respect to E, implying that g is a constant, and hence $U(x) \propto x^2$.

Conclusion

We recovered a result from elementary theoretical mechanics using neural differential equations.

▷ The training loss is implicitly defined in terms of the neural net. This is an example of **implicit** layer.

▷ It would be interesting to extend this type of approach to other fields, replacing time translation with other symmetries.