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The isochronism problem
Consider the 1D physical system

mẍ = −dU

dx
.

For which U is the system isochronic ?

The harmonic potential U(x) = 1
2kx

2 is one
solution.
Question : are there other such symmetric func-
tions U ?
Answer : no, necessarily U(x) ∝ x2.

Approach
We retrieve this uniqueness result experimen-
tally with deep learning.

• Parametrize the unknown force field by a neural
network.

• Impose periodicity with a loss on the trajecto-
ries.

• Train the neural differential equation.

• Compare the obtained phase portrait with that
of the harmonic oscillator.

Neural differential equations

Neural differential equations parametrize the flow of an ODE by a neural net :
dX

dt
= fθ(X).

Given some loss L[Xθ, θ], the gradient is backpropagated through the ODE [Chen et al., 2018].

. Learn a flow by imposing a loss on its trajectories.
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Architecture of a neural ODE.

mẍ = NNθ(x)

Experiment
• Parametrize the dynamics

mẍ = fθ(x),

where fθ(x) is a neural network approximating
the force field f(x) = −dU/dx.

• Measure the periodicity discrepancy with
the loss

L[Xθ] = ‖Xθ(T )−Xθ(0)‖2 .
• Optimize

min
θ

L[Xθ]

by gradient descent through the ODE, with ran-
dom initial conditions

X(0) ∼ N (0, I).

We trained the loss N = 100 training points with
T = 2π. We took for fθ a 2-layer fully connected
architecture with width 16 and tanh nonlinearity.

Results
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After training, the trajectories in the phase space are circular, meaning that the obtained neural potential is quadratic : U(x) = 1
2mω

2x2, with ω = 2π/T .

Theoretical derivation
Inspired from [Osypowski & Olsson, 1986]

• For some energy E, let y(E) denote the amplitude : −y(E) ≤ x ≤ y(E).

• Write the period in terms of the energy : T = 2
√
2

∫ y(E)

0

dx√
E − U(x)

.

• Changing variables, T = 2
√
2

∫ 1

0

g(uE)
du√

u(1− u)
with g(U) = x′(uE)

√
uE.

• This integral is a constant with respect to E, implying that g is a constant, and hence U(x) ∝ x2.

Conclusion
We recovered a result from elementary theoretical
mechanics using neural differential equations.

. The training loss is implicitly defined in terms
of the neural net. This is an example of implicit
layer.

. It would be interesting to extend this type of
approach to other fields, replacing time transla-
tion with other symmetries.


